1.介绍
1.1逻辑回归应用场景
广告点击率
是否为垃圾邮件
是否患病
金融诈骗
虚假账号
逻辑回归就是解决二分类问题的利器
1.2逻辑回归的原理
逻辑回归的输入是线性回归的结果
激活函数: sigmoid:
输出结果[0,1]区间的一个概率值,默认值为0.5阈值
输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有⼀个样本的 输⼊到逻辑回归输出结果0.55,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如 果得出结果为0.3那么,训练或者预测结果就为B(0)类别。
2.损失及优化
逻辑回归的损失,称之为对数似然损失,公式如下:
其中y为真实值,h (x)为预测值 怎么理解单个的式⼦呢?这个要根据log的函数图像来理解 ⽆论何时,我们都希望损失函数值,越⼩越好 分情况讨论,对应的损失函数值:
当y = 1时:
⽆论何时,我们都希望损失函数值,越⼩越好 分情况讨论,对应的损失函数值: 当y=1时,我们希望h (x)值越⼤越好; 当y=0时,我们希望h (x)值越⼩越好
优化
同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。
3.案例:癌症分类预测-良/恶性乳腺癌肿瘤预测
3.1数据集
原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/
数据描述
(1)699条样本,共11列数据,第⼀列⽤语检索的id,后9列分别是与肿瘤 相关的医学特征,最后⼀列表示肿瘤类型的数值。
(2)包含16个缺失值,⽤”?”标出。
3.2 案例分析
1.获取数据
2.基本数据处理
2.1 缺失值处理
2.2 确定特征值,⽬标值
2.3 分割数据
3.特征⼯程(标准化)
4.机器学习(逻辑回归)
5.模型评估
3.3 代码实现
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
'Normal Nucleoli', 'Mitoses', 'Class']
data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-ca
ncer-wisconsin.data",
names=names)
data.head()
# 2.基本数据处理
# 2.1 缺失值处理
data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna()
# 2.2 确定特征值,⽬标值
x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
# 3.特征⼯程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 4.机器学习(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)
# 5.模型评估
y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)
3.4实验结果
4.分类评估方法
4.1精确率与召回率
4.1.1
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适
⽤于多分类)
4.1.2 精确率(Precision)与召回率(Recall)
精确率:预测结果为正例样本中真实为正例的⽐例
召回率:真实为正例的样本中预测结果为正例的⽐例(查得全,对正样本的区分能⼒)
4.1.3 F1-score
还有其他的评估标准,F1-score,反映了模型的稳健型
4.1.4分类评估报告api
sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )
y_true:真实⽬标值
y_pred:估计器预测⽬标值
labels:指定类别对应的数字
target_names:⽬标类别名称
return:每个类别精确率与召回率
ret = classification_report(y_test, y_predict, labels=(2,4), target_names=("良性", "恶性"))
print(ret)
假设这样⼀个情况,如果99个样本癌症,1个样本⾮癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%
但是这样效果并不好,这就是样本不均衡下的评估问题
问题:如何衡量样本不均衡下的评估?
4.2 ROC曲线与AUC指标
4.2.1TPR与FPR
TPR = TP / (TP + FN)
所有真实类别为1的样本中,预测类别为1的⽐例
FPR = FP / (FP + TN)
所有真实类别为0的样本中,预测类别为1的⽐例
4.2.2 ROC曲线
ROC曲线的横轴就是FPRate,纵轴就是TPRate,当⼆者相等时,表示的意义则是:对于不论真实类别是1还是0的
样本,分类器预测为1的概率是相等的,此时AUC为0.5
4.2.3 AUC指标
AUC的概率意义是随机取⼀对正负样本,正样本得分⼤于负样本得分的概率
AUC的范围在[0, 1]之间,并且越接近1越好,越接近0.5属于乱猜
AUC=1,完美分类器,采⽤这个预测模型时,不管设定什么阈值都能得出完美预测。绝⼤多数预测的场合,不存
在完美分类器。
0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
4.2.4 AUC计算API
from sklearn.metrics import roc_auc_score
sklearn.metrics.roc_auc_score(y_true, y_score)
计算ROC曲线⾯积,即AUC值
y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
y_score:预测得分,可以是正类的估计概率、置信值或者分类器⽅法的返回值
# 0.5~1之间,越接近于1约好
y_test = np.where(y_test > 2.5, 1, 0)
print("AUC指标:", roc_auc_score(y_test, y_predict)
5. ROC曲线绘制
关于ROC曲线的绘制过程,通过以下举例进⾏说明
假设有6次展示记录,有两次被点击了,得到一个展示序列(1:1,2:0,3:1,4:0,5:0,6:0),前面的表示序号,后边的表示点击(1),或者没有点击(0)。然后在这6次展示的时候都通过了model算出来点击概率序列。
5.1 曲线绘制
5.1.1 如果概率的序列是(1:0.9,2:0.7,3:0.8,4:0.6,5:0.5,6:0.4)。
与原来的序列一起,得到序列(从高到低)
绘制的步骤是:
1)把概率序列从⾼到低排序,得到顺序(1:0.9,3:0.8,2:0.7,4:0.6,5:0.5,6:0.4);
2)从概率最⼤开始取⼀个点作为正类,取到点1,计算得到TPR=0.5,FPR=0.0;
3)从概率最⼤开始,再取⼀个点作为正类,取到点3,计算得到TPR=1.0,FPR=0.0;
4)再从最⼤开始取⼀个点作为正类,取到点2,计算得到TPR=1.0,FPR=0.25; 5)以此类推,得到6对TPR和FPR。
然后把这6对数据组成6个点(0,0.5),(0,1.0),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。
这6个点在⼆维坐标系中能绘出来。
5.2 意义解释
如上图的例⼦,总共6个点,2个正样本,4个负样本,取⼀个正样本和⼀个负样本的情况总共有8种。
上⾯的第⼀种情况,从上往下取,⽆论怎么取,正样本的概率总在负样本之上,所以分对的概率为1,AUC=1。再看那
个ROC曲线,它的积分是什么?也是1,ROC曲线的积分与AUC相等。
上⾯第⼆种情况,如果取到了样本2和3,那就分错了,其他情况都分对了;所以分对的概率是0.875,AUC=0.875。再
看那个ROC曲线,它的积分也是0.875,ROC曲线的积分与AUC相等。
上⾯的第三种情况,⽆论怎么取,都是分错的,所以分对的概率是0,AUC=0.0。再看ROC曲线,它的积分也是0.0,
ROC曲线的积分与AUC相等。
其实AUC的意思是——Area Under roc Curve,就是ROC曲线的积分,也是ROC曲线下⾯的⾯积。