题目描述
给定一个大小为
n
的数组nums
,返回其中的多数元素。多数元素是指在数组中出现次数 大于⌊ n/2 ⌋
的元素。你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例
示例 1:
输入:nums = [3,2,3] 输出:3示例 2:
输入:nums = [2,2,1,1,1,2,2] 输出:2提示:
n == nums.length
1 <= n <= 5 * 104
-10^9 <= nums[i] <= 10^9
进阶:尝试设计时间复杂度为 O(n)、空间复杂度为 O(1) 的算法解决此问题。
代码
思路来源于“同归于尽消杀法” :
由于多数超过50%, 比如100个数,那么多数至少51个,剩下少数是49个。
第一个到来的士兵,直接插上自己阵营的旗帜占领这块高地,此时领主 winner 就是这个阵营的人,现存兵力 count = 1。
如果新来的士兵和前一个士兵是同一阵营,则集合起来占领高地,领主不变,winner 依然是当前这个士兵所属阵营,现存兵力 count++;
如果新来到的士兵不是同一阵营,则前方阵营派一个士兵和它同归于尽。 此时前方阵营兵力count --。(即使双方都死光,这块高地的旗帜 winner 依然不变,因为已经没有活着的士兵可以去换上自己的新旗帜)
当下一个士兵到来,发现前方阵营已经没有兵力,新士兵就成了领主,winner 变成这个士兵所属阵营的旗帜,现存兵力 count ++。
就这样各路军阀一直以这种以一敌一同归于尽的方式厮杀下去,直到少数阵营都死光,那么最后剩下的几个必然属于多数阵营,winner 就是多数阵营。(多数阵营 51个,少数阵营只有49个,死剩下的2个就是多数阵营的人)
class Solution {
public:
int majorityElement(vector<int>& nums) {
int s=1,f=nums[0]; //s为计数器,f记录当前的领主
for(int i=1;i<nums.size();i++)
{
if(nums[i]==f)s++; //相同则领主加1
else if(s==0) //若以无领主,则下一个元素为领主
{
f = nums[i]; //
s++;
}
else
{
s--; //遇到士兵同归于尽一个士兵
}
}
return f;
}
};