自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 <山东大学项目实训>渲染引擎系统(八-完)

在Falcor框架下集成nrd

2022-06-12 01:23:56 251 1

原创 <山东大学项目实训>渲染引擎系统(七)

在Falcor框架下集成nrd。

2022-06-09 19:24:46 265

原创 <山东大学项目实训>渲染引擎系统(六)

在Falcor框架下集成nrd

2022-06-07 21:35:26 361

原创 <山东大学项目实训>渲染引擎系统(五)

在Falcor框架下集成nrd

2022-06-07 20:56:21 427

原创 <山东大学项目实训>渲染引擎系统(四)

在Falcor框架下集成nrd

2022-06-07 20:31:35 201

原创 <山东大学项目实训>渲染引擎系统(三)

在Falcor框架下集成nrd

2022-06-07 20:00:24 186

原创 <山东大学项目实训>渲染引擎系统(二)

在Falcor框架下集成nrd

2022-06-07 19:15:20 228

原创 <山东大学项目实训>渲染引擎系统(一)

在Falcor框架下集成nrd

2022-04-22 18:57:36 216

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十三篇——detect.py(2)

2021SC@SDUSC目录正式推理请不要忽视代码中的注释正式推理 for path, img, im0s, vid_cap in dataset: t1 = time_sync()# 处理每一张图片/视频的格式 if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device)

2021-12-28 04:49:55 2698 1

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十二篇——detect.py(1)

2021SC@SDUSC目录导入第三方库设置opt参数main函数run函数请不要忽视代码中的注释导入第三方库import argparseimport sysfrom pathlib import Pathimport cv2import numpy as npimport torchimport torch.backends.cudnn as cudnnFILE = Path(__file__).resolve()ROOT = FILE.parent

2021-12-28 04:40:48 848

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十一篇——val.py(3)

2021SC@SDUSC目录开始验证预处理图片和targetmodel前向推理计算验证集损失Run NMS统计每张图片的真实框、预测框信息画出前三个batch图片的egt和pred框计算mAPprint各项指标Save JSONReturn results请不要忽视代码中的注释开始验证for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):

2021-12-28 04:29:40 1581

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十篇——val.py(2)

2021SC@SDUSC目录初始化配置1调整模型初始化配置2加载val数据集初始化配置3接上一篇的run函数初始化配置1# Initialize/load model and set device # 初始化模型并选择相应的计算设备 # 判断是否是训练时调用run函数(执行train.py脚本), 如果是就使用训练时的设备 一般都是train training = model is not None if training: # c

2021-12-28 03:24:12 1123

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第九篇——val.py(1)

2021SC@SDUSC导入第三方库import argparseimport jsonimport osimport sysfrom pathlib import Pathfrom threading import Threadimport numpy as npimport torchfrom tqdm import tqdmFILE = Path(__file__).resolve()ROOT = FILE.parents[0] # YOLOv5 root dire

2021-12-28 03:15:45 2443

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第八篇——train.py(4)

2021SC@SDUSC目录训练run函数请不要忽视代码中的注释训练 # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers # 分类损失系数 hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image

2021-12-28 02:49:45 1685 2

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第七篇——train.py(3)

train函数载入参数def train(hyp, # path/to/hyp.yaml or hyp dictionary opt, device, callbacks ):opt: main中opt参数device: 当前设备初始化参数和配置信息save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, res

2021-12-28 02:35:48 1717

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第六篇——train.py(2)

请不要忽视代码中的注释

2021-12-28 02:15:58 1673

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第五篇——train.py(1)

导入第三方库import argparseimport loggingimport mathimport osimport randomimport sysimport timefrom copy import deepcopyfrom pathlib import Pathimport numpy as npimport torchimport torch.distributed as distimport torch.nn as nnimport yamlfr...

2021-12-27 23:24:13 837 1

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第四篇——export.py(2)

目录parse_out函数mainrun函数请不要忽略代码中的注释parse_out函数设置opt参数def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--w

2021-12-27 23:05:40 1155

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第三篇——export.py(1)

导入第三方库import argparse # 解析命令行参数模块 import subprocessimport sys # sys系统模块,包含了与python解释器和它的环境有关的函数import time # 时间模块 from pathlib import Path # path将str转化为path对象,使字符串路径易于操作import torch

2021-12-27 22:53:41 1793

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第二篇——综述

2021SC@SDUSCgithub上的代码如下所示我负责分析模型训练、测试、导出等操作的代码,即下图所示部分一共detect.py,export.py,hubconf.py,train.py,val.py五个python文件detect.py#检测脚本export.py#模型导出脚本hubconf.py#pytorch hub相关代码train.py#模型训练脚本val.py#...

2021-12-27 21:30:48 1654

原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第一篇——环境配置

2021SC@SDUSC目录2021SC@SDUSC一、github代码地址二、Anaconda下载三、安装PyCharm一、github代码地址GitHub - ultralytics/yolov5: YOLOv5 ???? in PyTorch > ONNX > CoreML > TFLitee二、Anaconda下载Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。因为包含了大量

2021-09-30 23:38:38 384

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除