- 博客(21)
- 收藏
- 关注
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十三篇——detect.py(2)
2021SC@SDUSC目录正式推理请不要忽视代码中的注释正式推理 for path, img, im0s, vid_cap in dataset: t1 = time_sync()# 处理每一张图片/视频的格式 if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device)
2021-12-28 04:49:55 2698 1
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十二篇——detect.py(1)
2021SC@SDUSC目录导入第三方库设置opt参数main函数run函数请不要忽视代码中的注释导入第三方库import argparseimport sysfrom pathlib import Pathimport cv2import numpy as npimport torchimport torch.backends.cudnn as cudnnFILE = Path(__file__).resolve()ROOT = FILE.parent
2021-12-28 04:40:48 848
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十一篇——val.py(3)
2021SC@SDUSC目录开始验证预处理图片和targetmodel前向推理计算验证集损失Run NMS统计每张图片的真实框、预测框信息画出前三个batch图片的egt和pred框计算mAPprint各项指标Save JSONReturn results请不要忽视代码中的注释开始验证for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
2021-12-28 04:29:40 1581
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第十篇——val.py(2)
2021SC@SDUSC目录初始化配置1调整模型初始化配置2加载val数据集初始化配置3接上一篇的run函数初始化配置1# Initialize/load model and set device # 初始化模型并选择相应的计算设备 # 判断是否是训练时调用run函数(执行train.py脚本), 如果是就使用训练时的设备 一般都是train training = model is not None if training: # c
2021-12-28 03:24:12 1123
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第九篇——val.py(1)
2021SC@SDUSC导入第三方库import argparseimport jsonimport osimport sysfrom pathlib import Pathfrom threading import Threadimport numpy as npimport torchfrom tqdm import tqdmFILE = Path(__file__).resolve()ROOT = FILE.parents[0] # YOLOv5 root dire
2021-12-28 03:15:45 2443
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第八篇——train.py(4)
2021SC@SDUSC目录训练run函数请不要忽视代码中的注释训练 # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers # 分类损失系数 hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image
2021-12-28 02:49:45 1685 2
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第七篇——train.py(3)
train函数载入参数def train(hyp, # path/to/hyp.yaml or hyp dictionary opt, device, callbacks ):opt: main中opt参数device: 当前设备初始化参数和配置信息save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, res
2021-12-28 02:35:48 1717
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第五篇——train.py(1)
导入第三方库import argparseimport loggingimport mathimport osimport randomimport sysimport timefrom copy import deepcopyfrom pathlib import Pathimport numpy as npimport torchimport torch.distributed as distimport torch.nn as nnimport yamlfr...
2021-12-27 23:24:13 837 1
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第四篇——export.py(2)
目录parse_out函数mainrun函数请不要忽略代码中的注释parse_out函数设置opt参数def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--w
2021-12-27 23:05:40 1155
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第三篇——export.py(1)
导入第三方库import argparse # 解析命令行参数模块 import subprocessimport sys # sys系统模块,包含了与python解释器和它的环境有关的函数import time # 时间模块 from pathlib import Path # path将str转化为path对象,使字符串路径易于操作import torch
2021-12-27 22:53:41 1793
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第二篇——综述
2021SC@SDUSCgithub上的代码如下所示我负责分析模型训练、测试、导出等操作的代码,即下图所示部分一共detect.py,export.py,hubconf.py,train.py,val.py五个python文件detect.py#检测脚本export.py#模型导出脚本hubconf.py#pytorch hub相关代码train.py#模型训练脚本val.py#...
2021-12-27 21:30:48 1654
原创 2021SC@SDUSC山东大学软件学院软件工程应用与实践——yolov5代码分析——第一篇——环境配置
2021SC@SDUSC目录2021SC@SDUSC一、github代码地址二、Anaconda下载三、安装PyCharm一、github代码地址GitHub - ultralytics/yolov5: YOLOv5 ???? in PyTorch > ONNX > CoreML > TFLitee二、Anaconda下载Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。因为包含了大量
2021-09-30 23:38:38 384
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人