AcWing 1309. 车的放置(预处理阶乘+组合数+排列数)

一.题目链接

二.思路

在这里插入图片描述
思路参考:https://www.acwing.com/solution/content/24436/

三.代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;
const int mod = 100003;
const int N = 2050;

int fact[N], infact[N];
int a, b, c, d, k;
//快速幂求逆元
int qmi(int a, int b)
{
    int res = 1;
    while(b)
    {
        if(b & 1) res = (LL)res * a % mod;
        a = (LL)a * a % mod;
        b >>= 1;
    }
    return res;
}
int C(int a, int b)
{
    if(a < b) return 0;
    return (LL)fact[a] * infact[a - b] % mod * infact[b] % mod;
}
int P(int a, int b)
{
    if(a < b) return 0;
    return (LL)fact[a] * infact[a - b] % mod;
}
int main()
{
    cin >> a >> b >> c >> d >> k;
    //预处理阶乘和阶乘的逆
    fact[0] = infact[0] = 1;
    for(int i = 1; i < N; i ++)
    {
        fact[i] = (LL)fact[i - 1] * i % mod;
        infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2) % mod;
    }
    
    LL res = 0;
    for(int i = 0; i <= k; i ++)
    {
         
        res = (res + (LL)C(b, i) * P(a, i) % mod * C(d, k - i) % mod * P(a + c - i, k - i)) % mod;
    }
    cout << res << endl;
    return 0;
}

四.总结

  • 对于一个规则的图形,若要放置n个物品,可以直接求 C a n ∗ P b n C^n_a*P^n_b CanPbn
    对于一个不规则的图形来说,需要将其化为规则的图形在计算,比如本题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值