最长公共子序列

本文介绍了如何通过C语言实现最长公共子序列的动态规划算法,以输入字符串为例,展示了如何构造二维数组并根据对角线和斜对角线规则计算最长公共子序列的长度。
摘要由CSDN通过智能技术生成

问题描述:

子数组和子串是连续的,子序列不一定连续。

示例:

输入:abcde ace

输出:3

输入:ALGORITHMS  ALCHEMIST

输出:5(分别是ALHMS)

方法:借鉴B站UP主alchemist_dong的讲解视频,感谢。附上视频链接:最长公共子序列 - 动态规划 Longest Common Subsequence - Dynamic Programming_哔哩哔哩_bilibili

如有侵权,会主动删帖。以下是我听了视频后的理解。

  1. 按照行填
  2. 不匹配时取对角线最大值填,这是因为能确保当前填的数是两个字符前的最大匹配数
  3. 匹配时取斜对角线的值加1,这是因为能确保当前填的数是匹配前的最大匹配数

代码:

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<string.h>
#include<math.h>
int max(int a, int b) {
    return a > b ? a : b;
}

int main() {
    char str1[81];
    char str2[81];
    int i, j, n, m;
    int maxnum = 0;
    printf("please input str1:");
    gets(str1);
    printf("please input str2:");
    gets(str2);
    int matrix[81][81] = { 0 };
    for (i = 0; str1[i] != '\0'; i++) {
        for (j = 0; str2[j] != '\0'; j++) {
            if (str1[i] == str2[j]) {
                matrix[i + 1][j + 1] = matrix[i][j] + 1;//因为i,j都是从0开始
                                                        //但是第0行和第0列初始化为0
            }
            else
            {
                matrix[i + 1][j + 1] = max(matrix[i][j + 1], matrix[i + 1][j]);
            }
        }
    }
    for (n = 0; n < i; n++) {//找二维数组中的最大值
        for (m = 0; m < j; m++) {
            if (maxnum < matrix[i][j]) {
                maxnum = matrix[i][j];
            }
        }
    }
    printf("the longest Common Subsequence is %d\n", maxnum);
    return 0;
}

运行结果截图:

如果该内容对你有小小的帮助,请给我点个赞!谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猪脱脱写代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值