探索性数据分析(EAD)
文章平均质量分 96
Bigdataxy
分享机器学习,人工智能,大数据,数据挖掘相关知识~
展开
-
【EDA与特征工程】数据探索与特征工程综合指南
本综合指南主要参考《A Comprehensive Guide to Data Exploration》进行编写,用作日常学习。原文中将缺失值插补与异常值处理两大块作为数据探索部分,通过查阅资料及结合数据分析经验,本文将变量识别、单变量分析、双变量分析划为探索性数据分析(EDA) 部分,将缺失值插补、异常值处理、变量转化、特征/变量构造、特征筛选及降维划为特征工程部分。原创 2023-02-02 21:56:58 · 964 阅读 · 0 评论 -
Seaborn数据可视化——一篇详细的学习记录
本文详细简介的记录了利用Seaborn进行可视化操作,数据可视化是数据分析中重要的一步,在前期数据的探索性分析,以及后期结果的呈现中都有着重要地位。更加全面的教学可进入KaggleSeaborn教学进行学习。原创 2022-11-03 19:43:10 · 1972 阅读 · 2 评论