系列文章目录
第一章 先验概率和后验概率的通俗解释(贝叶斯分类)
第二章 贝叶斯公式证明及Bayesain在机器学习重要地位的理解
第三章 【机器学习】贝叶斯分类器
前沿
贝叶斯分类器作为“生成式模型”可处理多分类问题,在数据较少的情况下依然有效,本文介绍了算法原理推导及基于算法原理的代码实现与基于sklearn包的代码实现。
一、贝叶斯决策论
贝叶斯决策论是概率框架下实施决策的基本方法,对于分类任务,在所有相关概率都已知的理想情形下,该方法考虑如何基于这些概率和误判损失来选择最优的类别标记。
假设有 N 中可能的类别标记,即 y = ( c 1 , c 2 , . . . , c N ) , λ i j y=(c_1,c_2,...,c_N),\lambda_{ij} y=(c1,c2,...,cN),λij是将一个真实标记为 c j c_{j} cj的样本误分类为 c i c_i ci所产生的损失。基于后验概率 P ( c i ∣ x ) P(c_i|x) P(ci∣x)可获得将样本 x x x分类为 c i c_i ci所产生的期望损失,即在样本 x x x上的“条件风险”
R ( c i ∣ x ) = ∑ j = 1 N λ i j P ( c j ∣ x ) R(c_i|x)=\sum^{N}_{j=1}\lambda_{ij}P(c_j|x) R(ci∣x)=j=1∑NλijP(cj∣x) 在一次分类过程中我们希望分类结果尽可能接近真实值,即要求总体的期望损失最小,这就产生了贝叶斯判别准则:为最小化总体风险,只需在每个样本上选择那个能使条件风险 R ( c ∣ x ) R(c|x) R(c∣x)最小的类别标记,即
h ∗ ( x ) = a r g c ∈ y m i n R ( c ∣ x ) h^*(x)=arg_{c\in y}minR(c|x) h∗(x)=argc∈yminR(c∣x) 此时, h ∗ h^* h∗称为贝叶斯最优分类器,与之对应的总体风险 R ( h ∗ ) R(h^*) R(h∗)称为贝叶斯风险。 1 − R ( h ∗ ) 1-R(h^*) 1−R(h∗)反映了分类器所能达到的最好性能,即通过机器学习所能产生的模型精度的理论上限。其中,贝叶斯风险 R ( h ) R(h) R(h)为
R ( h ∗ ) = E x [ R ( h ∗ ( x ) ∣ x ) ] R(h^*)=E_x[R(h^*(x)|x)] R(h∗)=Ex[R(h∗(x)∣x)]若目标是最小化分类错误率,则误判损失 λ i j \lambda_{ij} λij可写为
λ i j = { 0 , i = j ; 1 , o t h e r w i s e \lambda_{ij} = \{ \begin{array}{rcl} 0, & i=j;\\ 1, &otherwise\end{array} λij={
0,1,i=j;otherwise此时的条件风险 R ( c ∣ x ) = ∑ j = 1 N λ i j P ( c j ∣ x ) = ∑ j ≠ i N λ i j P ( c j ∣ x ) + 0 = 1 − P ( c ∣ x ) R(c|x)=\sum^N_{j=1}\lambda_{ij}P(c_j|x)\\ =\sum^N_{j\neq i}\lambda_{ij}P(c_j|x)+0=1-P(c|x) R(c∣x)=