【机器学习】贝叶斯分类器(算法原理实现及sklearn实现)

本文详细介绍了贝叶斯分类器的概念和应用,包括先验概率、后验概率、贝叶斯公式、极大似然估计和朴素贝叶斯分类器。通过实例展示了如何基于训练数据估计概率,并通过拉普拉斯修正处理零概率问题。最后,通过代码实现展示了朴素贝叶斯模型的构建和性能评估。
摘要由CSDN通过智能技术生成

系列文章目录

第一章 先验概率和后验概率的通俗解释(贝叶斯分类)
第二章 贝叶斯公式证明及Bayesain在机器学习重要地位的理解
第三章 【机器学习】贝叶斯分类器



前沿

  贝叶斯分类器作为“生成式模型”可处理多分类问题,在数据较少的情况下依然有效,本文介绍了算法原理推导及基于算法原理的代码实现与基于sklearn包的代码实现。

一、贝叶斯决策论

  贝叶斯决策论是概率框架下实施决策的基本方法,对于分类任务,在所有相关概率都已知的理想情形下,该方法考虑如何基于这些概率和误判损失来选择最优的类别标记。
  假设有 N 中可能的类别标记,即 y = ( c 1 , c 2 , . . . , c N ) , λ i j y=(c_1,c_2,...,c_N),\lambda_{ij} y=(c1,c2,...,cN),λij是将一个真实标记为 c j c_{j} cj的样本误分类为 c i c_i ci所产生的损失。基于后验概率 P ( c i ∣ x ) P(c_i|x) P(cix)可获得将样本 x x x分类为 c i c_i ci所产生的期望损失,即在样本 x x x上的“条件风险”
R ( c i ∣ x ) = ∑ j = 1 N λ i j P ( c j ∣ x ) R(c_i|x)=\sum^{N}_{j=1}\lambda_{ij}P(c_j|x) R(cix)=j=1NλijP(cjx)  在一次分类过程中我们希望分类结果尽可能接近真实值,即要求总体的期望损失最小,这就产生了贝叶斯判别准则:为最小化总体风险,只需在每个样本上选择那个能使条件风险 R ( c ∣ x ) R(c|x) R(cx)最小的类别标记,即
h ∗ ( x ) = a r g c ∈ y m i n R ( c ∣ x ) h^*(x)=arg_{c\in y}minR(c|x) h(x)=argcyminR(cx)  此时, h ∗ h^* h称为贝叶斯最优分类器,与之对应的总体风险 R ( h ∗ ) R(h^*) R(h)称为贝叶斯风险。 1 − R ( h ∗ ) 1-R(h^*) 1R(h)反映了分类器所能达到的最好性能,即通过机器学习所能产生的模型精度的理论上限。其中,贝叶斯风险 R ( h ) R(h) R(h)
R ( h ∗ ) = E x [ R ( h ∗ ( x ) ∣ x ) ] R(h^*)=E_x[R(h^*(x)|x)] R(h)=Ex[R(h(x)x)]若目标是最小化分类错误率,则误判损失 λ i j \lambda_{ij} λij可写为
λ i j = { 0 , i = j ; 1 , o t h e r w i s e \lambda_{ij} = \{ \begin{array}{rcl} 0, & i=j;\\ 1, &otherwise\end{array} λij={ 0,1,i=j;otherwise此时的条件风险 R ( c ∣ x ) = ∑ j = 1 N λ i j P ( c j ∣ x ) = ∑ j ≠ i N λ i j P ( c j ∣ x ) + 0 = 1 − P ( c ∣ x ) R(c|x)=\sum^N_{j=1}\lambda_{ij}P(c_j|x)\\ =\sum^N_{j\neq i}\lambda_{ij}P(c_j|x)+0=1-P(c|x) R(cx)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bigdataxy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值