1. 常用分类方法
任务:根据用户的学习动力、能力提升意愿、兴趣度、空余时间,判断其是否适合学习本门课程。
如图所示常用的分类方法:
接下来重点介绍用决策树实现分类。
在逻辑回归中,我们根据不同特征数据求出逻辑方程的决策边界,从而实现分类任务。
而决策树是一种对实例进行分类的树形结构,通过多层判断区分目标所属类别,本质上是通过多层判断,从训练数据集中归纳出一组分类规则。
优点:
- 计算量小,运算速度快
- 易于理解,可清晰查看各属性的重要性
缺点:
- 忽略属性间的相关性
- 样本类别分布不均匀时,容易影响模型表现
2. 决策树求解
(1)案例分析
对于给定的数据集,我们如何构造决策树模型是关键。核心是特征选择