机器学习之决策树(Day5)

文章介绍了决策树作为一种常用的分类方法,其优点在于计算量小、易于理解和实现。详细阐述了决策树的求解原理,包括ID3算法和信息熵的概念,以及如何通过信息增益选择特征。并通过Python代码展示了使用scikit-learn库构建和可视化决策树的过程,以鸢尾花数据集为例。
摘要由CSDN通过智能技术生成

1. 常用分类方法

任务:根据用户的学习动力、能力提升意愿、兴趣度、空余时间,判断其是否适合学习本门课程。
如图所示常用的分类方法:
在这里插入图片描述
接下来重点介绍用决策树实现分类。
在逻辑回归中,我们根据不同特征数据求出逻辑方程的决策边界,从而实现分类任务。
在这里插入图片描述
而决策树是一种对实例进行分类的树形结构,通过多层判断区分目标所属类别,本质上是通过多层判断,从训练数据集中归纳出一组分类规则。
在这里插入图片描述
优点:

  • 计算量小,运算速度快
  • 易于理解,可清晰查看各属性的重要性

缺点:

  • 忽略属性间的相关性
  • 样本类别分布不均匀时,容易影响模型表现

2. 决策树求解

(1)案例分析

对于给定的数据集,我们如何构造决策树模型是关键。核心是特征选择

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值