软件测试21-移动测试神器:带你玩转Appium

在上一篇文章中,我介绍了 Web App、Native App 和 Hybrid App 三种不同类型的移动应用以及对应的测试设计方法,也介绍了移动应用所特有的专项测试知识。

今天,我就以移动应用的自动化测试为主题,介绍目前主流的移动应用自动化测试框架 Appium。Appium 是一个开源的自动化测试框架,支持 iOS 和 Android 上 Web App、Native App 和 Hybrid App 的自动化测试。

由于基于 Appium 的移动应用环境搭建相对复杂,虽然网上也有不少教程,但是知识点都比较零碎,而且大多都是基于早期版本的示例,所以我会使用最新版本的 Appium Desktop 1.6.2 和 Appium Server 1.8.1 来展开今天的内容:

  • 首先,我会展示如何在 Mac 环境下一步一步地搭建 Appium 测试环境;
  • 接下来,我以 iOS 为例,实际开发两个测试用例,一个是 Native App 的测试用例,另一个是 Web App 的测试用例(因为 Hybird App 的测试用例其实是类似的,Native App 的壳,Web App 的内容,所以就不再单独举例子了);
  • 然后,我会在 iOS 的模拟器上实际执行这两个测试用例(之所以选择 iOS 模拟器,而不用 iOS 真机做例子,是因为 iOS 真机的测试需要用到 Apple 开发者账号,还需要对被测应用进行签名等,会在环境搭建过程中引入很多额外步骤,而这些步骤对于讲解 Appium 并没有直接的关系);
  • 最后,当你已经通过实际使用对 Appium 形成感性认识后,我再来简单介绍一下 Appium 的内部原理,让你做到知其然知其所以然。

移动应用的自动化测试需求

在开始设计测试用例前,我们首先需要明确要开发的这两个自动化测试用例的具体测试需求。

  1. Native App 的测试用例,被测 App 我选用了 Appium 官方的示例 App,被测 App 的源代码可以通过“https://github.com/appium/ios-test-app” 下载,然后在 Xcode 中编译打包成 TestApp.app。
    具体的测试需求是输入两个数字,然后点击“Compute Sum”验证两个数字相加后的结果是否正确。

  2. Web App 的测试用例,具体需求是在 iPhone 上打开 Safari 浏览器,访问 Appium 的官方主页“Redirecting”,然后验证主页的标题是否是“Appium: Mobile App Automation Made Awesome”。

图 1 Native App 和 Web App 的 GUI 界面示例

接下来,我将从最初的环境搭建开始,和你来一起开发 iOS 上的 Native App 和 Web App 的测试用例。首先我们看一下 iOS 的环境搭建,如果你之前没有接触过这部分内容,你可以跟着我的步骤一步一步来做;而如果你已经比较熟悉 Xcode 的话,可以跳过这部分内容,直接从“Appium 环境搭建”部分看起。

iOS 环境搭建

在正式搭建 Appium 环境前,我们先来搭建 iOS 开发环境:

  • 首先,下载安装 Xcode;
  • 然后,在 Xcode 中下载 iOS 的模拟器;
  • 接着,使用 Xcode 编译打包被测试 App;
  • 最后,在 iOS 的模拟器中尝试手工执行这两个测试用例。

在 iOS 模拟器中,手动执行测试用例的具体操作步骤如下:

  1. 启动 Xcode,导入 ios-test-app 下的 TestApp.xcodeproj 项目。

  2. 在 Xcode 中,打开“Preferences”中的“Components”,完成 iOS 10.0 Simulator 的下载。

  3. 在 Xcode 的“General”页面,将 TestApp 的“De

本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员zhi路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值