列出连通集(图的bfs + dfs)

7-6 列出连通集 (25 分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v1​ v2​ ... vk​ }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>

using namespace std;

const int N = 11;
int g[N][N];
int st[N];
int n, m;

void dfs(int u)
{
    cout << u << ' ';
    st[u] = true;
    for(int i = 0; i < n; i++)
        if(!st[i] && g[u][i])   dfs(i);
}

void bfs(int u)
{
    queue<int> q;
    q.push(u);
    st[u] = true;
    while(q.size())
    {
        auto t = q.front();
        q.pop();
        cout << t << ' ';
        for(int i = 0; i < n; i++)
        if(!st[i] && g[t][i]) {
            q.push(i);
            st[i] = true;
        }
    }
}

int main()
{
    cin >> n >> m;
    while(m--)
    {
        int a, b;
        cin >> a >> b;
        g[a][b] = g[b][a] = 1;
    }
    
    for(int i = 0; i < n; i++)
    {
        if(!st[i])
        {
            cout << "{ ";
            dfs(i);
            cout << "}" << endl;
        }
    }
    
    memset(st, 0, sizeof st);
    for(int i = 0; i < n; i++)
    {
        if(!st[i])
        {
            cout << "{ ";
            bfs(i);
            cout << "}" << endl;
        }
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值