<数据集>路面病害数据集<目标检测>

数据集下载链接

点击下载数据集icon-default.png?t=O83Ahttps://download.csdn.net/download/qq_53332949/89721543数据集格式:VOC+YOLO格式

图片数量:6000张

标注数量(xml文件个数):6000

标注数量(txt文件个数):6000

标注类别数:7

标注类别名称:['Manhole', 'Patch-Net', 'Patch-Crack', 'Pothole', 'Crack', 'Patch-Pothole', 'Net']

序号类别名称图片数框数
1Manhole32964164
2Patch-Net5481035
3Patch-Crack14782543
4Pothole212254
5Crack11261656
6Patch-Pothole620755
7Net250322

使用标注工具:labelImg

标注规则:对类别进行画水平矩形框

图片示例:

标注示例:

数据集介绍:道路缺陷检测多类别数据集 一、基础信息 数据集名称:道路缺陷检测多类别数据集 数据规模: - 训练集:4,620张图片 - 验证集:399张图片 - 测试集:400张图片 分类类别: - 裂缝(Cracks):道路表面线性开裂现象 - 边缘沉降(EdgeSettling):道路边缘结构下陷 - 无道路(NoRoad):非道路区域标识 - 坑洞(Potholes):路面凹陷形成的危险缺陷 - 松散(Raveling):沥青集料剥落现象 - 车辙(Rutting):轮迹带形成的纵向沟槽 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标与类别标签 二、适用场景 智能道路巡检系统: 支持车载/无人机巡检设备的实时道路病害检测,提升道路养护效率 市政维护决策支持: 通过量化分析缺陷类型与分布密度,优化道路维修优先级规划 自动驾驶感知优化: 增强自动驾驶系统对复杂路况的识别能力,提升行车安全系数 学术研究与模型优化: 为CV领域提供道路基础设施检测的基准数据集,支持YOLO系列等目标检测算法研究 三、数据集优势 多缺陷类型覆盖: 包含6种典型道路病害类型,涵盖结构性损坏与表面缺陷 高精度标注体系: YOLO格式标注经严格质检,边界框定位精准,支持即插即用 场景多样性保障: 包含不同光照条件下的道路样本,覆盖城市道路与郊区公路场景 任务适配性强: 可直接应用于目标检测任务,支持扩展至实例分割等进阶任务 工程应用价值突出: 针对道路维护实际需求设计,特别强化对坑洞、裂缝等高危缺陷的检测能力
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值