A. And Then There Were K

该程序解决了一个计算机科学问题,即找到一个整数n开始,向下连续取数进行位运算(AND)直到结果为0的最大整数k。通过计算n的二进制位数并构造相应位数少一位且所有位为1的数,可以得到答案。例如,对于输入2,最大满足条件的k是1;对于输入5,最大k是3。此问题涉及到位操作和二进制理解。
摘要由CSDN通过智能技术生成

A. And Then There Were K

time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output
Given an integer n, find the maximum value of integer k such that the following condition holds:

        n & (n−1) & (n−2) & (n−3) & ... (k) = 0

where & denotes the bitwise AND operation.
Input
The first line contains a single integer t (1≤t≤3⋅104). Then t test cases follow.

The first line of each test case contains a single integer n (1≤n≤109).

Output
For each test case, output a single integer — the required integer k.

Example
input

3
2
5
17

output

1
3
15

Note
In the first testcase, the maximum value for which the continuous & operation gives 0 value, is 1.

In the second testcase, the maximum value for which the continuous & operation gives 0 value, is 3. No value greater then 3, say for example 4, will give the & sum 0.

5&4≠0,
5&4&3=0.
Hence, 3 is the answer.

#include <iostream>
#include <string>
#include <vector>
#include <cmath>
#include <iomanip>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
 
 
 
int main() {
	int t;
	cin >> t;
	while (t--) {
		long long n;
		cin >> n;
		int i=1;
		for (;;i++) {
			n = n / 2;
			if (n == 0) {
				break;
			}
		}
		i--;
		long long sum = 0;
		for (int j = 0; j < i; j++) {
			sum = sum + pow(2, j);
		}
		cout << sum << endl;
	}
}

题意:找出一个数往下与到某数使结果为0
思路:暴力会超时,后来一想就是求二进制位数,然后求位数少一位且每位为1的数

Description Consider the following 5 picture frames placed on an 9 x 8 array. ........ ........ ........ ........ .CCC.... EEEEEE.. ........ ........ ..BBBB.. .C.C.... E....E.. DDDDDD.. ........ ..B..B.. .C.C.... E....E.. D....D.. ........ ..B..B.. .CCC.... E....E.. D....D.. ....AAAA ..B..B.. ........ E....E.. D....D.. ....A..A ..BBBB.. ........ E....E.. DDDDDD.. ....A..A ........ ........ E....E.. ........ ....AAAA ........ ........ EEEEEE.. ........ ........ ........ ........ 1 2 3 4 5 Now place them on top of one another starting with 1 at the bottom and ending up with 5 on top. If any part of a frame covers another it hides that part of the frame below. Viewing the stack of 5 frames we see the following. .CCC.... ECBCBB.. DCBCDB.. DCCC.B.. D.B.ABAA D.BBBB.A DDDDAD.A E...AAAA EEEEEE.. In what order are the frames stacked from bottom to top? The answer is EDABC. Your problem is to determine the order in which the frames are stacked from bottom to top given a picture of the stacked frames. Here are the rules: 1. The width of the frame is always exactly 1 character and the sides are never shorter than 3 characters. 2. It is possible to see at least one part of each of the four sides of a frame. A corner shows two sides. 3. The frames will be lettered with capital letters, and no two frames will be assigned the same letter. Input Each input block contains the height, h (h<=30) on the first line and the width w (w<=30) on the second. A picture of the stacked frames is then given as h strings with w characters each. Your input may contain multiple blocks of the format described above, without any blank lines in between. All blocks in the input must be processed sequentially. Output Write the solution to the standard output. Give the letters of the frames in the order they were stacked from bottom to top. If there are multiple possibilities for an ordering, list all such possibilities in alphabetical order, each one on a separate line. There will always be at least one legal ordering for each input block. List the output for all blocks in the input sequentially, without any blank lines (not even between blocks). Sample Input 9 8 .CCC.... ECBCBB.. DCBCDB.. DCCC.B.. D.B.ABAA D.BBBB.A DDDDAD.A E...AAAA EEEEEE.. Sample Output EDABC
06-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值