【tf学习笔记1】 tensorflow2.0+的相关硬件资源调用和设置问题

1.获得本地计算机的硬件设备名称

首先使用tf.config.list_physical_devices命令获得本地设备列表
代码如下:

import tensorflow as tf
physical_gpus = tf.config.list_physical_devices("GPU")  # 获得本地GPU列表
physical_cpus = tf.config.list_physical_devices("CPU")  # 获得本地CPU列表
print(f"GPU:{physical_gpus}")
print(f"CPU:{physical_cpus}")
print("GPU个数:", len(physical_gpus))
print("CPU个数:", len(physical_cpus))

以下分析以GPU(CPU同理)为例
通过上述代码我们获得了本地计算机的GPU资源信息列表,下一步我们将进行tensorflow代码可见GPU的设置。

2.设置当前tf程序能够调用的GPU资源

以下代码表示设置当前tensorflow代码仅仅使用第一块GPU的资源。

tf.config.set_visible_devices(devices=physical_gpus[0], device_type="GPU")  # 设置使用第一块GPU

在实际工程应用中,还必须对GPU的显存进行可控的设置和管理,不能由tensorflow自身来完成对计算机GPU显存的管理。这是因为tensorflow会把当前能够调用的显存空间全部调用,进而导致显存的过度浪费,甚至导致程序的崩溃和计算机的短暂黑屏,容易对于本地GPU造成一定程度的危害和损伤。下一步将对tensorflow使用GPU的显存作出设置。

3.显存管理

3.1自动显存分配(用多少取多少)

for gpu in physical_gpus:
    tf.config.experimental.set_memory_growth(device=gpu, enable=True)

使用上面的代码,能够在tensorflow程序运行过程中,动态分配显存。tensorflow会根据当前步骤需要用到的显存空间大小来对显存进行分配,避免程序一开始的盲目分配导致的显存碎片化和浪费。

3.2设置最大使用显存

tf.config.set_logical_device_configuration(physical_gpus[0], [tf.config.LogicalDeviceConfiguration(memory_limit=1024)])

使用上面的代码,设置使用GPU0的资源数最大为1024MB=1GB。

4.单GPU模拟多GPU进行分布式训练

tf.config.set_logical_device_configuration(
    physical_gpus[0],
    [tf.config.LogicalDeviceConfiguration(memory_limit=1024),
     tf.config.LogicalDeviceConfiguration(memory_limit=1024)])

上述代码是3.2的代码的扩充,目的是从实际GPU0资源中,分配两块GPU资源区,可以视为产生了两块虚拟GPU,虚拟GPU的生存周期是当前运行的tensorflow程序进程。
使用单机多卡训练MirroredStrategy 策略

strategy = tf.distribute.MirroredStrategy()
print('模拟GPU数量: %d' % strategy.num_replicas_in_sync)  # 输出设备数量变为2个实现模拟多GPU

运行上述代码可以发现,从程序视角来看,已经具有两块GPU可以参与分布式训练。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力回答你的问题。对于您的问题,我理解您想问我如何调用U-NET模型,以下是我给出的回答。 首先,U-NET模型是一个用于图像分割的深度学习模型,它使用卷积神经网络来学习图像中不同区域的特征,并将它们分割成不同的类别。在TensorFlow 2.0中,我们可以使用tf.keras API来实现U-NET模型。 以下是一个简单的U-NET模型的实现代码: ```python import tensorflow as tf from tensorflow.keras.layers import * def conv_block(inputs, filters, kernel_size=(3, 3), activation='relu', padding='same'): x = Conv2D(filters, kernel_size, activation=activation, padding=padding)(inputs) x = BatchNormalization()(x) x = Conv2D(filters, kernel_size, activation=activation, padding=padding)(x) x = BatchNormalization()(x) return x def unet(input_shape=(256, 256, 3)): inputs = Input(shape=input_shape) c1 = conv_block(inputs, 64) p1 = MaxPooling2D((2, 2))(c1) c2 = conv_block(p1, 128) p2 = MaxPooling2D((2, 2))(c2) c3 = conv_block(p2, 256) p3 = MaxPooling2D((2, 2))(c3) c4 = conv_block(p3, 512) p4 = MaxPooling2D((2, 2))(c4) c5 = conv_block(p4, 1024) u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5) u6 = concatenate([u6, c4]) c6 = conv_block(u6, 512) u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c3]) c7 = conv_block(u7, 256) u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c2]) c8 = conv_block(u8, 128) u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c1]) c9 = conv_block(u9, 64) outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = tf.keras.Model(inputs=[inputs], outputs=[outputs]) return model ``` 在这个实现中,我们使用了Conv2D、BatchNormalization、MaxPooling2D和Conv2DTranspose等层来构建U-NET模型。我们还定义了一个conv_block函数来简化代码。 使用这个实现代码,我们可以通过以下方式调用U-NET模型: ```python model = unet() ``` 这将返回一个U-NET模型的实例,我们可以使用该实例来进行训练和预测。 希望这个回答对您有所帮助。如果您还有其他问题,请随时问我。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值