问题 : 2019阶段1考试 题目2
时间限制: 1 Sec 内存限制: 128 MB
提交: 3806 解决: 1219
[提交][状态][讨论版]
题目描述
由于计算机内部表达方式的限制,浮点运算都有精度问题,为了得到高精度的计算结果,就需要自己设计实现方法。(0,1)之间的任何浮点数都可以表达为两个正整数的商,为了表达这样两个数的商,可以将相除的结果以多个整数来表示,每个整数表示结果的一位。即商的第一位用一个整数来表示,第二位用另一个整数来表示,以此类推,就可以输出一个高精度的除法结果了。如16/19的结果0.8421052631...就可以依次输出8、4、2、1、0、5、2、6、3、1...。而除法的过程,则可以模仿人工列竖式做除法的方式,先将被除数乘以10,得到一位商以后,将余数乘以10作为下一轮计算的被除数:
160/19->8余8
80/19->4余4
...
当某次余数为0时,则表明除尽。
现在,请写一个程序,输入一个分数,计算出它的小数形式。无论是否可以除尽,输出最多小数点后200位。
输入
形如 a/b 的两个数,其中10<=a<b<100。也就是说,这个小数一定是小于1的正数。
输出
形如 0.xxxxxxxxx的小数,小数点后最多200位。输出结束的时候要带着回车换行。如果a/b是一个有限不循环小数,则输出完所有的有效位就可以了,不需要再输出后面的0来凑满200位。
样例输入
16/19
样例输出
0.842105263157894...(出于显示需要省略)...3684
代码实现
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
int main() {
int a, b;
int count = 0;
scanf("%d/%d", &a, &b);
printf("0.");
int res = 0;
while (a)
{
res = a * 10 / b;
a = a * 10 % b;
printf("%d", res);
count++;
if (a == 0 || count > 200-1) {
break;
}
}
printf("\n");
return 0;
}