给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提示:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
进阶:
如果你已经实现 O(n) 时间复杂度的解法, 请尝试设计一个 O(n log(n)) 时间复杂度的解法。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/minimum-size-subarray-sum
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int i =0;
long long sum = 0;
const int MAX_INT = 0x7fffffff;
int result = MAX_INT;
for(int j = 0; j < nums.size(); j++){
sum += nums[j];
while(sum >= target){
result = result < (j-i+1) ? result :(j-i+1);
sum -= nums[i++];
}
}
if(result == MAX_INT){
return 0;
}
return result;
}
};
// 这道题使用滑动窗口,j作为终止位置,如果sum >= target, 就缩小窗口,看里面有没有更小的。最后返回最小值。