HUAWEI Atlas200I DK A2学习笔记
一.跑板子自带的例程
视频教学:https://www.hiascend.com/hardware/developer-kit-a2/resource?floor=start
跟着就可以实现开发版自带的例程
我用的远程链接平台是:mobaxterm
下载链接:https://mobaxterm.mobatek.net/
ps:用这个平台的时候发现atc模型转换非常慢,正在尝试有没有更好的平台来解决这个问题
遇到的问题:烧录时选择了192.168.1.207没法建立链接,不清楚原因,选择了192.168.0.2(教程里面提供的)就可行。
二.跑昇腾开源库的例程
先贴上昇腾的开源库:https://gitee.com/ascend/samples
然后举例跑一个例程,比如 samples/ python / level2_simple_inference / 1_classification / resnet50_imagenet_classification
贴上链接:https://gitee.com/ascend/samples/tree/master/python/level2_simple_inference/1_classification/resnet50_imagenet_classification
可以看到里面有写具体的操作步骤,主要先把需要的文件下载好。
下载链接:https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/contrib/cv/resnet50/ATC_resnet50_caffe_AE
然后需要自己建一个文件夹,即caffe_model,然后把下载的文件放进去。
再下载要用到的图片:
https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/dog1_1024_683.jpg
https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/dog2_1024_683.jpg
下载好图片放到data里面。
之后可以进行模型转换了,即这一步:
然后里面昇腾AI处理器型号为Ascend310B4,不清楚是不是都是这个型号,不过可以查询,查询方式为:输入npu-smi info,就会显示处理器型号
我出问题的一步就是4模型转换这一步
具体就是卡在atc转换不动了,查了可能的原因,说是内存不够了,需要扩内存,我当时的内存是
swap总计为8g,这是扩容过的,扩容之后就跑通了,但还是很慢(跑了大概半个小时),然后这里附上linux扩充虚拟内存的教程:
https://blog.csdn.net/liuwentao888/article/details/127031181?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170839394516800182192363%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=170839394516800182192363&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v31_ecpm-1-127031181-null-null.142v99pc_search_result_base8&utm_term=Linux%E6%9C%BA%E5%A2%9E%E5%8A%A0%E5%86%85%E5%AD%98&spm=1018.2226.3001.4187
atc模型转换成功后就可以执行:python3 ./src/acl_net.py
之后就可以看到结果了:
真是美丽的结果。