HUAWEI Atlas200I DK A2学习笔记

本文介绍了如何在HUAWEIAtlas200IDKA2开发板上运行自带例程和昇腾开源库中的ResNet50模型,包括遇到的内存问题及解决方案,如内存扩展。作者详细记录了模型转换过程和使用Mobaxterm平台的体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


HUAWEI Atlas200I DK A2学习笔记


一.跑板子自带的例程

视频教学:https://www.hiascend.com/hardware/developer-kit-a2/resource?floor=start

在这里插入图片描述

跟着就可以实现开发版自带的例程

我用的远程链接平台是:mobaxterm
下载链接:https://mobaxterm.mobatek.net/
ps:用这个平台的时候发现atc模型转换非常慢,正在尝试有没有更好的平台来解决这个问题

遇到的问题:烧录时选择了192.168.1.207没法建立链接,不清楚原因,选择了192.168.0.2(教程里面提供的)就可行。

二.跑昇腾开源库的例程

先贴上昇腾的开源库:https://gitee.com/ascend/samples
然后举例跑一个例程,比如 samples/ python / level2_simple_inference / 1_classification / resnet50_imagenet_classification
贴上链接:https://gitee.com/ascend/samples/tree/master/python/level2_simple_inference/1_classification/resnet50_imagenet_classification
可以看到里面有写具体的操作步骤,主要先把需要的文件下载好。
下载链接:https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/contrib/cv/resnet50/ATC_resnet50_caffe_AE
然后需要自己建一个文件夹,即caffe_model,然后把下载的文件放进去。
再下载要用到的图片:
https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/dog1_1024_683.jpg
https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/dog2_1024_683.jpg
下载好图片放到data里面。

之后可以进行模型转换了,即这一步:
在这里插入图片描述

然后里面昇腾AI处理器型号为Ascend310B4,不清楚是不是都是这个型号,不过可以查询,查询方式为:输入npu-smi info,就会显示处理器型号
在这里插入图片描述

我出问题的一步就是4模型转换这一步

具体就是卡在atc转换不动了,查了可能的原因,说是内存不够了,需要扩内存,我当时的内存是
在这里插入图片描述
swap总计为8g,这是扩容过的,扩容之后就跑通了,但还是很慢(跑了大概半个小时),然后这里附上linux扩充虚拟内存的教程:
https://blog.csdn.net/liuwentao888/article/details/127031181?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170839394516800182192363%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=170839394516800182192363&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v31_ecpm-1-127031181-null-null.142v99pc_search_result_base8&utm_term=Linux%E6%9C%BA%E5%A2%9E%E5%8A%A0%E5%86%85%E5%AD%98&spm=1018.2226.3001.4187
atc模型转换成功后就可以执行:python3 ./src/acl_net.py
之后就可以看到结果了:在这里插入图片描述
真是美丽的结果。

### 华为 Atlas 200 AI 加速模块与 MATLAB 的集成开发 对于希望利用华为 Atlas 200 AI加速模块 (型号DK A2) 进行开发并结合MATLAB使用的开发者来说,官方提供了详细的文档和支持材料来帮助完成这一过程[^1]。 #### 获取官方资源链接 为了获取最新的开发指南和技术文档,建议访问华为官方网站中的昇腾社区板块,在这里可以找到针对Atlas系列产品的技术白皮书、API手册以及案例研究等资料。特别是《Atlas 200 DK 开发者指南》这份文件包含了如何设置环境配置到具体的应用实例说明等内容[^2]。 #### 安装必要的软件包 由于MATLAB本身并不直接支持Ascend平台下的神经网络推理功能,因此需要安装额外的支持库——即通过MathWorks提供的Deep Learning Toolbox Support Package for NVIDIA GPU Coder实现CUDA代码生成,并配合华为提供的CANN(Custom Ascend Neural Network) SDK来进行最终部署工作。这部分操作可以在产品随附光盘里寻得对应版本的安装程序,也可以从上述提到的官网下载页面获得最新发布的版本信息[^3]。 ```bash # 假设已经正确设置了环境变量PATH和LD_LIBRARY_PATH指向CANN SDK路径下 cd /path/to/cann_sdk_folder sudo ./install.sh ``` #### 参考样例项目学习 除了理论性的文字描述外,《MindStudio工具链使用指导》一书中还收录了一些基于实际场景构建的小型应用范例,这些例子不仅有助于理解整个流程框架的设计思路,同时也能够作为初学者模仿练习的基础素材。例如其中有一个关于图像分类的任务就是采用Python脚本编写而成,但其核心算法部分完全可以移植至Matlab环境中执行相似的功能测试[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值