任务描述
本关任务:通过学习神经网络模型的基础概念知识,完成相应的选择题。
相关知识
为了完成本关任务,你需要掌握:
- 神经网络模型;
- 经典神经网络结构;
- 一般业务场景中神经网络适应性;
- 神经网络深度。
神经网络模型
学术界中有着各种各样的神经网络模型,例如感知器、馈型神经网络、卷积神经网络、循环神经网络、组织映射等。这些不同的神经网络模型的差异主要在于神经元的激活规则、神经网络模型的拓扑结构以及参数的学习算法等。
- 神经元激活规则:主要针对神经元的输入到输出之间的映射关系 ,通常是非线性函数,也被称作激活函数 ;
- 神经网络模型的拓扑结构:主要是指神经元之间的关联关系,主要包括层数、连接方式(全连接或非全连接)、连接权值等,其中连接权值是神经网络中不断学习和调整的参数 ;
- 参数的学习算法:通过训练数据不断训练调整神经网络中的各项参数。
目前常见的神经网络结构包括:前馈网络结构、反馈网络结构和记忆网络结构。
-
前馈网络。网络模型中的每个神经元根据收到的信息时序分为不同的层。每层的