【分支界限算法】装载问题

【问题描述】

集装箱装载问题要求确定在不超过轮船载重量的前提下,将尽可能多的集装箱装上轮船。

在前面的“装载问题”中介绍了回溯算法的应用。

输入样例

80 4

18 7 25 36

输出样例

79

装载问题的解空间是一棵子集树,采用队列式分支限界法来解决。该算法只求出所要求的最优值

【算法分析】

1、队列式分支限界法

定义一个先进先出(FIFO)队列Q,初始化队列时,在尾部增加一个-1标记。

这是一个分层的标志,当一层结束时,在队列尾部增加一个-1标志。

定义扩展结点相应的载重量为Ew,剩余集装箱的重量为r,当前最优载重量为bestw,轮船的载重量为c=80。

算法从子集树的第0层开始展开。

第0层即集装箱0的重量w[0]=18,是否装入轮船的两种状态。

在第0层,Ew=0,bestw=0,r=w[1]+w[2]+w[3]=68,Ew+w[0]<c,Ew+r>bestw,结点B和C依次进入队列。

从队列中取出活结点—1,由于队列不为空,表示当前层结束,新的一层开始,在队列尾部增加一个-1标记。

从队列中取出活结点Ew=18,即结点B。

第1层即集装箱1的重量w[1]=7,bestw=18,r=w[2]+w[3]=61,Ew+w[1]=25<c,Ew+r=79>bestw,结点D和E依次进入队列。

从队列中取出活结点Ew=0,即结点C。

bestw=25,r=w[2]+w[3]=61,由于Ew+w[1]=7<c, Ew+r=61>bestw,结点F和G依次进入队列。

从队列中取出活结点—1,由于队列不为空,表示当前层结束,新的一层开始,在队列尾部增加一个-1标记。

2、数据结构 

 

//(1)装载问题分支限界算法的数据结构
#define NUM 100
int n;			//集装箱的数量
int c;			//轮船的载重量
int w[NUM];		//集装箱的重量数组

3、分支界限算法的实现

//(2)装载问题分支限界算法的实现
int MaxLoading()
{
 queue<int> Q;
 Q.push(-1);
 int i = 0;
 int Ew = 0;
 int bestw = 0;
 int r = 0;
 for(int j=1; j<n; j++)
  r += w[j];
 //搜索子空间树
 while (true)
 {
  //检查左子树
  int wt = Ew+w[i];
  if (wt<=c)  //检查约束条件
  {
   if (wt>bestw) bestw = wt;
   //加入活结点队列
   if (i<n-1) Q.push(wt);
  }
    //检查右子树
  //检查上界条件
  if (Ew+r>bestw && i<n-1) 
    Q.push(Ew);
  //从队列中取出活结点
  Ew = Q.front();
  Q.pop();
  if (Ew==-1)  //判断同层的尾部
  {
   if (Q.empty()) return bestw;
   //同层结点尾部标志
   Q.push(-1);
   //从队列中取出活结点
   Ew = Q.front();
   Q.pop();
   i++;
   r -= w[i];
  }
 }
 return bestw;
}

 【算法的完整实现】

 

#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;

#define NUM 100
int n;
int c;
int w[NUM];

int MaxLoading()
{
	queue<int> Q;
	Q.push(-1);
	int i = 0;
	int Ew = 0;
	int bestw = 0;
	int r = 0;
	for(int j=1; j<n; j++)
		r += w[j];
	while (true)
	{
		int wt = Ew+w[i];
		if (wt<=c)
		{
			if (wt>bestw) bestw = wt;
			if (i<n-1) Q.push(wt);
		}
		if (Ew+r>bestw && i<n-1) Q.push(Ew);
		Ew = Q.front();
		Q.pop();
		if (Ew==-1)
		{
			if (Q.empty()) return bestw;
			Q.push(-1);
			Ew = Q.front();
			Q.pop();
			i++;
			r -= w[i];
		}
	}
	return bestw;
}

int main()
{
	while(cin>>c>>n)
	{
		for(int i=0; i<n; i++)
			cin>>w[i];
		int ans  =  MaxLoading();
		if (ans) cout<<ans<<endl;;
		else cout<<"No answer!"<<endl;
	}
	return 0;
}

 

 

 

 

#include #include #include #include using namespace std; ifstream infile; ofstream outfile; class Node { friend int func(int*, int, int, int*); public: int ID; double weight;//物品的重量 }; bool comp1(Node a, Node b) //定义比较规则 { return a.weight > b.weight; } class Load; class bbnode; class Current { friend Load; friend struct Comp2; private: int upweight;//重量上界 int weight;//结点相应的重量 int level;//活结点在子集树中所处的层次 bbnode* ptr;//指向活结点在子集树中相应结点的指针 }; struct Comp2 { bool operator () (Current *x, Current *y) { return x->upweightupweight; } }; class Load { friend int func(int*, int, int, int*); public: int Max0(); private: priority_queue<Current*, vector, Comp2>H;//利用优先队列(最大堆)储存 int limit(int i); void AddLiveNode(int up, int cw, bool ch, int level); bbnode *P;//指向扩展结点的指针 int c;//背包的容量 int n;//物品的数目 int *w;//重量数组 int cw;//当前装载量 int *bestx;//最优解方案数组 }; class bbnode { friend Load; friend int func( int*, int, int, int*); bbnode* parent; bool lchild; }; //结点中有双亲指针以及左儿子标志 int Load::limit(int i) //计算结点所相应重量的上界 { int left,a; left= c - cw;//剩余容量 a = cw; //b是重量上界,初始值为已经得到的重量 while (i <= n && w[i] parent = P; b->lchild = ch; Current* N = new Current; N->upweight = up; N->weight = cw; N->level = level; N->ptr = b; H.push(N); } int Load::Max0() { int i = 1; P = 0; cw = 0; int bestw = 0; int up = limit(1); while (i != n + 1) { int wt = cw + w[i]; //检查当前扩展结点的左儿子结点 if (wt bestw) bestw =wt; AddLiveNode(up,wt, true, i + 1); } up = limit(i + 1); //检查当前扩展结点的右儿子结点 if (up >= bestw)//如果右儿子可行 { AddLiveNode(up,cw, false, i + 1); } Current* N = H.top(); //取队头元素 H.pop(); P = N->ptr; cw = N->weight; up = N->upweight; i = N->level; } bestx = new int[n + 1]; for (int j = n; j > 0; --j) { bestx[j] = P->lchild; P = P->parent; } return cw; } int func(int *w, int c, int n, int *bestx) //调用Max0函数对子集树的优先队列式进行分支限界搜索 { int W = 0; //初始化装载的总质量为0 Node* Q = new Node[n]; for (int i = 0; i < n; ++i) { Q[i].ID = i + 1; Q[i].weight = w[i+1]; W += w[i+1]; } if (W <= c)//如果足够装,全部装入 return W; sort(Q, Q + n, comp1); //首先,将各物品按照重量从大到小进行排序; Load K; K.w = new int[n + 1]; for (int j = 0; j < n; j++) K.w[j + 1] = w[Q[j].ID]; K.cw = 0; K.c = c; K.n = n; int bestp = K.Max0(); for (int k = 0; k < n; k++) { bestx[Q[k].ID] = K.bestx[k + 1]; } delete []Q; delete []K.w; delete []K.bestx; return bestp; } int main() { int*w,*Final; int c,n,i,best; infile.open("input.txt",ios::in); if(!infile) { cerr<<"open error"<>c; infile>>n; w=new int[n+1]; for(i=1;i>w[i]; infile.close(); Final = new int[n+1]; best = func( w, c, n, Final); outfile.open("output.txt",ios::out); if(!outfile) { cerr<<"open error"<<endl; exit(1); } outfile << best << endl; for (int i = 1; i <= n; ++i) { outfile<<Final[i]<<" "; } outfile.close(); return 0; }
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值