- 博客(2)
- 收藏
- 关注
原创 基于深度学习的智能跌倒检测系统实现(YOLOv5 + UI多功能界面)
本文介绍了使用YOLOv5深度学习模型实现智能跌倒检测系统的详细过程,能实时监测跌倒事件并自动发出警报。采用轻量级ONNX模型部署,支持多种警报方式(视觉、声音、邮件)。系统检测准确率高达90%以上,适合养老院、医院等场所。本文包括Python代码实现、训练数据集和PyQt UI界面设计。系统支持图片、视频和摄像头的跌倒行为识别。提供了完整的Python代码资源和下载链接,适用于新手参考。
2025-04-18 17:28:32
879
原创 基于机器学习的智能新闻分类系统实现
双模型支持:同时支持TF-IDF+SVM和Word2Vec+XGBoost两种文本表示和分类方法简洁的用户界面:提供直观友好的Web界面,支持用户登录和新闻分类高准确度:针对常见的新闻类别,分类准确率较高响应速度快:平均预测时间不超过1秒项目采用了Python语言开发,结合Flask搭建Web服务,前端使用Bootstrap框架构建响应式界面。通过这个项目,我实现了一个简洁有效的新闻分类系统,将机器学习技术应用到实际场景中。
2025-04-06 11:37:51
1102
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人