代码随想录day62图论11

Floyd 算法精讲

题目链接
文章讲解

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    int n, m;
    cin >> n >> m; // 输入图的节点数n和边数m

    // grid[i][j][k] 表示从节点i到节点j,在使用前k个节点作为中间节点的情况下的最短距离
    // 初始化为一个大值10005,表示初始状态下的路径都是不可达的
    vector<vector<vector<int>>> grid(n + 1, vector<vector<int>>(n + 1, vector<int>(n + 1, 10005)));

    // 读取所有边的信息,存储到 grid 数组中
    for (int i = 0; i < m; i++) {
        int x, y, z;
        cin >> x >> y >> z;  // 读取一条边,起点为x,终点为y,边的权重为z
        grid[x][y][0] = z;    // 初始化权值,表示直接连接的路径
        grid[y][x][0] = z;    // 因为是无向图,双向存储
    }

    // Floyd-Warshall 算法的主循环,计算最短路径
    // k 表示考虑的中间节点,i 和 j 是起点和终点
    for (int k = 1; k <= n; k++) {  // 遍历每个可能的中间节点k
        for (int i = 1; i <= n; i++) {  // 遍历起点i
            for (int j = 1; j <= n; j++) {  // 遍历终点j
                // 递推公式:
                // 1. 从 i 到 j 的最短路径可以通过中间节点k更新
                // 2. 选择两种情况中的最小值:
                //    - 经过节点k,min(grid[i][k][k-1] + grid[k][j][k-1])
                //    - 不经过节点k,保持原有的最短路径grid[i][j][k-1]
                grid[i][j][k] = min(grid[i][j][k - 1], grid[i][k][k - 1] + grid[k][j][k - 1]);
            }
        }
    }

    int z, start, end;
    cin >> z;  // 输入查询次数

    // 处理每一对查询的起点和终点
    while (z--) {
        cin >> start >> end;  // 输入查询的起点和终点
        // 判断最终的最短路径是否仍然是大值10005,表示不可达
        if (grid[start][end][n] == 10005) {
            cout << -1 << endl;  // 如果不可达,输出 -1
        } else {
            cout << grid[start][end][n] << endl;  // 输出从 start 到 end 的最短路径
        }
    }

    return 0;
}

A * 算法精讲 (A star算法)

题目链接
文章讲解

#include<iostream>
#include<queue>
#include<string.h>
using namespace std;

int moves[1001][1001];  // 存储到达每个点的最短步数
int dir[8][2] = {-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,-2};  // 定义骑士的8个移动方向

int b1, b2;  // 目标位置(终点)

// F = G + H
// G = 从起点到该节点路径消耗
// H = 该节点到终点的预估消耗

// Knight结构体,表示骑士的当前位置、路径消耗和估算消耗
struct Knight{
    int x, y;  // 当前坐标
    int g, h, f;  // g为从起点到当前节点的路径消耗,h为从当前节点到终点的估算消耗,f为总代价
    bool operator < (const Knight & k) const {  // 重载运算符,使得优先队列按 f 值从小到大排序
        return k.f < f;  // f值越小,优先级越高
    }
};

priority_queue<Knight> que;  // 优先队列,用于A*算法选择下一个最优节点

// 估算函数,计算从当前位置到终点的欧几里得距离(不用开根号提高效率)
int Heuristic(const Knight& k) { 
    return (k.x - b1) * (k.x - b1) + (k.y - b2) * (k.y - b2); // 不开根号,加速计算
}

// A*算法的主体部分
void astar(const Knight& k)
{
    Knight cur, next;  // 当前节点和下一个节点
	que.push(k);  // 将起点放入优先队列
	while(!que.empty())  // 当队列不为空时
	{
		cur = que.top();  // 取出队列中的最优节点(f最小的节点)
		que.pop();  // 弹出最优节点
		if(cur.x == b1 && cur.y == b2)  // 如果当前节点就是目标节点
			break;  // 找到目标,退出循环
		// 遍历骑士的8个方向
		for(int i = 0; i < 8; i++)
		{
			next.x = cur.x + dir[i][0];  // 根据当前方向计算下一个位置的x坐标
			next.y = cur.y + dir[i][1];  // 根据当前方向计算下一个位置的y坐标
			// 判断下一个位置是否越界
			if(next.x < 1 || next.x > 1000 || next.y < 1 || next.y > 1000)
				continue;  // 如果越界,跳过
			// 如果当前点没有被访问过
			if(!moves[next.x][next.y])
			{
				moves[next.x][next.y] = moves[cur.x][cur.y] + 1;  // 记录到达next的步数

                // 开始计算f值(f = g + h)
				next.g = cur.g + 5;  // 设定每步的路径消耗为5(骑士每次都走“日”字形)
                next.h = Heuristic(next);  // 计算到目标的估算消耗
                next.f = next.g + next.h;  // 计算f值(总代价)

                que.push(next);  // 将新的节点加入优先队列
			}
		}
	}
}

// 主函数
int main()
{
    int n, a1, a2;
    cin >> n;  // 输入测试用例数量
    while (n--) {  // 处理每个测试用例
        cin >> a1 >> a2 >> b1 >> b2;  // 输入起点和终点的坐标

        memset(moves, 0, sizeof(moves));  // 初始化moves数组,表示所有城市都没有被访问

        Knight start;  // 创建起点
        start.x = a1;  // 起点的x坐标
        start.y = a2;  // 起点的y坐标
        start.g = 0;  // 起点的g值为0,因为到自己不需要路径
        start.h = Heuristic(start);  // 计算起点到终点的估算消耗
        start.f = start.g + start.h;  // 计算起点的f值

		astar(start);  // 执行A*算法来找到最短路径

        while(!que.empty()) que.pop(); // 清空队列,以准备下一次的计算
        
		cout << moves[b1][b2] << endl;  // 输出从起点到终点的最短路径步数
	}
	return 0;
}

### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值