图的表示与存储,并查集

图的表示和储存

1、邻接表的实现-vector容器

struct Edge{
    int x,y;
}
vector<Edge> e[N];

2、邻接表的实现-链式前向星

struct Edge{
    int last;
    int to;
    int w;
}
void add(int u,int v,int w)
{
    edge[cnt].w = w;//更改边权
    edge[cnt].to = v//更改下一个点的位置
    edge[cnt],last = head[u];//记录上一个以u为终点的点
    head[u] = cnt++;
}

其中:

edge[i].to表示第i条边的终点,

edge[i].last表示与第i条边同起点的上一条边的储存位置。

edge[i].w为边权值

head数组,用来表示以i为起点的第一条边储存的位置 head中的元素初始值为 -1

在这里插入图片描述

3、手写图

int h[N],e[N],ne[N],w[N];

void add(int u.int v,int c)
{
    e[idx] = v,w[idx] = c;
    ne[idx] = h[u],h[u] = idx++;
}
for(i = head[u];i!=-1;i = ne[i])

4、连通性判断

并查集

int find(int x)//并查集
{
    if(x != fr[x]) x = find(fr[x]);
    return x;
}

来一道题
小蓝要用七段码数码管来表示一种特殊的文字。

在这里插入图片描述

上图给出了七段码数码管的一个图示,数码管中一共有 7 段可以发光的二极管,分别标记为 a, b, c, d, e, f, g。

小蓝要选择一部分二极管(至少要有一个)发光来表达字符。在设计字符的表达时,要求所有发光的二极管是连成一片的。

  • 例如:b 发光,其他二极管不发光可以用来表达一种字符。

  • 例如:c 发光,其他二极管不发光可以用来表达一种字符。

这种方案与上一行的方案可以用来表示不同的字符,尽管看上去比较相似。

  • 例如:a, b, c, d, e 发光,f, g 不发光可以用来表达一种字符。

  • 例如:b, f 发光,其他二极管不发光则不能用来表达一种字符,因为发光的二极管没有连成一片。

请问,小蓝可以用七段码数码管表达多少种不同的字符?

#include <iostream>

using namespace std;
const int n=7;
int cou=0;
int visit[n],num[n];//灯是否亮 /  并查集数组
int col[n][n];//二极管之间是否连通

//先dfs全排列,再用并查集判断发光部分是否连通
int Find(int x){
    //并查集找根节点
    if(x == num[x])
        return x;
    else
        return num[x]=Find(num[x]);
}

//将同一集合的合并
void Union(int x,int y){
    int a=Find(x),b=Find(y);
    num[a]=b;
}

void solve(){
    for(int i=0;i<n;i++) //并查集数组初始化
        num[i]=i;

    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            if(visit[i] && visit[j] && col[i][j]){
                Union(i,j);
            }
        }
    }

    int temp=0;  //这个不能写到全局变量
    for(int i=0;i<n;i++){
        if(visit[i] && num[i] == i)  //判断有几个集合
            temp++;
    }
    if(temp == 1) //只有一个集合表明发光部分没有断开,结果+1
        cou++;
}

void dfs(int index){
    if(index == n){
        solve();
        return;
    }
    //用0表示灯不亮,用1表示灯亮,全排列
    for(int k=0;k<=1;k++){
        visit[index]=k;
        dfs(index+1);
    }
}

int main()
{
    //连通处设为1
    //a 0   b 1   c 2   d 3  e 4  f 5  g 6
    //col[0][1]和col[1][0]是不同的!!因为全排列所以有顺序
    col[0][1]=col[0][5]=1;
    col[1][0]=col[1][2]=col[1][6]=1;
    col[2][3]=col[2][6]=1;
    col[3][2]=col[3][4]=1;
    col[4][3]=col[4][5]=col[4][6]=1;
    col[5][4]=col[5][6]=1;
    col[6][5]=1;
    dfs(0);

    cout<<cou<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值