7-4 最长递增子序列 (30 分)

7-4 最长递增子序列 (30 分)

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

输入格式:
输入包含两行。第一行给出一个正整数n(1≤n≤2500)。第二行给出n个由空格分隔的整数(-104≤nums[i]≤104)。
输出格式:
在一行中输出最长递增子序列的长度。
在这里插入图片描述

思路:
一般想法是,从一点向右找,找比他大的, 但是太耗时,麻烦;应当每到一个点,往回看

外循环遍历每个点;内循环从当前点a往回看,找比该点小的点,该过程用数组存储,即找到一个比该点小的点b,判断数组中,c[b]记录的比b小的点的个数+1(因为点b小于a)是否大于 数组中c[a]记录的个数,若大于,则更新c[a]=c[b]+1,之后继续向前看,直到0;

在整个过程中要使用max记录最大次数,最后输出max+1(要将当前点算入递增序列中);

代码:

#include<stdio.h>
int main()
{
    int n;
    scanf("%d",&n);
    int a[n],c[n],max=-1;
    for(int i=0; i<n; i++)
    {
        scanf("%d",&a[i]);
        c[i]=0;
    }
    for(int i=0;i<n;i++)
    {
        for(int j=i-1;j>=0;j--)
        {
            if(a[i]>a[j]&&c[i]<=c[j]+1)
                c[i]=c[j]+1;
            if(c[i]>max)
                max=c[i];
        }
    }
	printf("%d",max+1);
}

在这里插入图片描述
202111141726日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

baibai___

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值