【数据结构】用Java实现优先级队列&堆

目录

1. 优先级队列概念

2. 优先级队列的模拟实现

2.1 堆的概念

2.2 堆的存储方式

2.3 堆的创建

2.3.1 堆向下调整

2.3.2 堆的创建

2.4 堆的插入与删除

2.4.1 堆的插入

2.4.2 堆的删除

2.5 用堆模拟实现优先级队列

3 常用接口介绍

3.1 PriorityQueue的特性

3.2 PriorityQueue常用接口介绍

3.2.1 优先级队列的构造

 3.2.2 插入/删除/获取优先级最高的元素

4. 堆的实现与优先级队列的实现

4.1 堆的实现

4.2 用最大堆实现优先级队列

4.3 优先级队列的实现(2)


1. 优先级队列概念

        前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。

2. 优先级队列的模拟实现

JDK1.8中的PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整。

2.1 堆的概念

        如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆(最大值在堆顶),根节点最小的堆叫做最小堆或小根堆(最小值在堆顶)。
堆的性质:

  • 最大堆中某个节点的值总是不大于其父节点的值(最小堆中某个节点的值总是不小于其父节点的值);
  • 堆总是一棵完全二叉树。

【注意】在最大堆中,深度越小,节点值越大?错节点值与深度无关!!!

2.2 堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储,

注意】对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。

将元素存储到数组中后,假设i为节点在数组中的下标,则有:
如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
如果2 i + 1 小于节点个数,则节点i的左孩子下标为2 i + 1,否则没有左孩子
如果2 i + 2 小于节点个数,则节点i的右孩子下标为2 i + 2,否则没有右孩子

2.3 堆的创建

2.3.1 堆向下调整

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。
向下过程(以小堆为例):

  • 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
  • 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标记
  • 将parent与较小的孩子child比较,如果:parent小于较小的孩子child,调整结束.否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子
  • 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续上一步骤。

public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右
    int child = 2 * parent + 1;
    int size = array.length;
    while (child < size) {
		// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
        if(child+1 < size && array[child+1] < array[child]){
            child += 1;
        }
  	 	// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
        if (array[parent] <= array[child]) {
        	break;
        }else{
        // 将双亲与较小的孩子交换
            int t = array[parent];
            array[parent] = array[child];
            array[child] = t;
            // parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
            parent = child;
            child = parent * 2 + 1;
        }
	}
}

【注意】在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析:
最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(log{2}N)

2.3.2 堆的创建

那对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?

public static void createHeap(int[] array) {
// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
    for (int i = (array.length-2)>>1; i >= 0; i --) {
        shiftDown(array, i);
    }
}

2.3.3 建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N)。

2.4 堆的插入与删除

2.4.1 堆的插入

堆的插入总共需要两个步骤:

  • 先将元素放入到底层空间中(注意:空间不够时需要扩容)
  • 将最后新插入的节点向上调整,直到满足堆的性质

public void shiftUp(int child) {
    // 找到child的双亲
    int parent = (child - 1) / 2;
    while (child > 0) {
    // 如果双亲比孩子大,parent满足堆的性质,调整结束
        if (array[parent] > array[child]) {
        	break;
        }
        else{
        // 将双亲与孩子节点进行交换
            int t = array[parent];
            array[parent] = array[child];
            array[child] = t;
            // 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
            child = parent;
            parent = (child - 1) / 1;
        }
    }
}

2.4.2 堆的删除

【注意】堆的删除一定删除的是堆顶元素。具体如下:

  • 将堆顶元素对堆中最后一个元素交换
  • 将堆中有效数据个数减少一个
  • 对堆顶元素进行向下调整

2.5 用堆模拟实现优先级队列

public class MyPriorityQueue {
// 演示作用,不再考虑扩容部分的代码
    private int[] array = new int[100];
    private int size = 0;
    public void offer(int e) {
    	array[size++] = e;
        shiftUp(size - 1);
    }
    public int poll() {
        int oldValue = array[0];
        array[0] = array[--size];
        shiftDown(0);
        return oldValue;
    }
    public int peek() {
       	return array[0];
    }
}

3 常用接口介绍

3.1 PriorityQueue的特性

Java集合框架中提供了 PriorityQueue PriorityBlockingQueue 两种类型的优先级队列, PriorityQueue 是线 程不安全的, PriorityBlockingQueue 是线程安全的 ,本文主要介绍 PriorityQueue
【关于PriorityQueue的使用要注意】
1. 使用时必须导入 PriorityQueue 所在的包,即:
2. PriorityQueue 中放置的 元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出
ClassCastException 异常
3. 不能 插入 null 对象,否则会抛出 NullPointerException
4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
5. 插入和删除元素的时间复杂度为
6. PriorityQueue 底层使用了堆数据结构
7. PriorityQueue 默认情况下是小堆- -- 即每次获取到的元素都是最小的元素

3.2 PriorityQueue常用接口介绍

3.2.1 优先级队列的构造

        // JDK的优先级队列
        // 默认最小堆的实现
        // 创建一个空的优先级队列,底层默认容量是11
        PriorityQueue<Integer> q1 = new PriorityQueue<>();
        // 创建一个空的优先级队列,底层的容量为initialCapacity
        PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
        ArrayList<Integer> list = new ArrayList<>();
        list.add(4);
        list.add(3);
        list.add(2);
        list.add(1);
        // 用ArrayList对象来构造一个优先级队列的对象
        // q3中已经包含了三个元素
        //默认是最小堆,此时的优先级,值越小,优先级越高
        PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
        System.out.println(q3.size());
        System.out.println(q3.peek());
默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器
class IntCmp implements Comparator<Integer>{
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2-o1;
    }
}
public class TestPriorityQueue {
    public static void main(String[] args) {
        PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
        p.offer(4);
        p.offer(3);
        p.offer(2);
        p.offer(1);
        p.offer(5);
        System.out.println(p.peek());
    }
}

 3.2.2 插入/删除/获取优先级最高的元素

static void TestPriorityQueue2(){
    int[] arr = {4,1,9,2,8,0,7,3,6,5};
    // 一般在创建优先级队列对象时,如果知 , 接将底层容量给好
    // 否则在插入时需要不多的扩容
    // 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
    PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
    for (int e: arr) {
        q.offer(e);
    }
    System.out.println(q.size()); // 打印优先级队列中有效元素个数
    System.out.println(q.peek()); // 获取优先级最高的元素
    // 从优先级队列中删除两个元素之和,再次获取优先级最高的元素
    q.poll();
    q.poll();
    System.out.println(q.size()); // 打印优先级队列中有效元素个数
    System.out.println(q.peek()); // 获取优先级最高的元素
    q.offer(0);
    System.out.println(q.peek()); // 获取优先级最高的元素
    // 将优先级队列中的有效元素删除掉,检测其是否为空
    q.clear();
    if(q.isEmpty()){
        System.out.println("优先级队列已经为空!!!");
    }else{
        System.out.println("优先级队列不为空");
    }
}

4. 堆的实现与优先级队列的实现

4.1 堆的实现

import java.util.ArrayList;
import java.util.List;
import java.util.NoSuchElementException;

public class MaxHeap {
    // 具体保存元素的数组
    private List<Integer> data;
    // 堆中有效元素个数
    private int size;
    public MaxHeap() {
        this(10);
    }

    public MaxHeap(int capacity) {
        this.data = new ArrayList<>(capacity);
    }

//    将普通二叉树堆化heapify  堆排序时间复杂度O(n) = nlogn,空间复杂度O(n)
    public MaxHeap(int[] arr){
        data = new ArrayList<>(arr.length);
        for (int i:arr
             ) {
            data.add(i);
            size++;
        }
        for (int i = parent(size - 1); i >= 0 ; i--) {
            siftDown(i);
        }
    }

    public int extractMax(){
        if(data.isEmpty()){
            throw new NoSuchElementException("heap is empty");
        }
        int val = data.get(0);
        data.set(0, data.get(size - 1));
        data.remove(size - 1);
        size--;
        siftDown(0);
        return val;
    }

    public int peekMax() {
        if (data.isEmpty()) {
            throw new NoSuchElementException("heap is empty!cannot peek!");
        }
        return data.get(0);
    }

//    时间复杂度log n
    private void siftDown(int i) {
        while (leftChild(i) < size){
            int j = leftChild(i);
            if(j + 1 < size && data.get(j) < data.get(j + 1)){
                j = j + 1;
            }
//            此时j索引一定保存了左右子树的最大值
//            data.get(j) < data.get(i)也可以!不过会多走一次循环
            if(data.get(j) <= data.get(i)){
//                已经下沉到合适的位置
                break;
            }else {
                swap(j, i);
                i = j;
            }
        }
    }

    // 向最大堆中添加元素
    public void add(int val) {
        // 1.先尾插新元素到数组的尾部
        data.add(val);
        size++;
        siftUp(size - 1);
    }


    // 元素上浮操作,当添加的元素比父节点大时,元素上浮
    private void siftUp(int i) {
//        时间复杂度log n
        while (i > 0 && data.get(i) > data.get(parent(i))){
            // 只有当还有父节点且当前节点值 > 父节点时才交换
//            int temp = data.get(i);
//            data.set(i,data.get(parent(i)));
//            data.set(parent(i),temp);
            swap(i,parent(i));
            // 继续向上判断
            i = parent(i);
        }
    }

//    交换时只需要将下标索引传入即可
    private void swap(int i, int parent) {
        int temp = data.get(i);
       data.set(i,data.get(parent));
       data.set(parent,temp);
    }

    //    获取父节点
    private int parent(int k){
        return (k - 1)/2;
    }
//    获取左孩子
    private int leftChild(int k){
        return 2 * k + 1;
    }
//    获取右孩子
    private int rightChild(int k){
        return 2 * k + 2;//2*(k+1)
    }

    @Override
    public String toString() {
        return data.toString();
    }
}

4.2 用最大堆实现优先级队列

MyQueue接口

public interface MyQueue<E> {
    void offer( E val);
    E poll();
    E peek();
    boolean isEmpy();
}

MyPriorityQueue 类

import bin_tree.heap.MaxHeap;
import seqlist.stack_queue.queue.MyQueue;

/**
 * 最大堆构建优先级队列
 */

public class MyPriorityQueue implements MyQueue<Integer>{
    private MaxHeap heap = new MaxHeap();

    @Override
    public void offer(Integer val) {
        heap.add(val);
    }

    @Override
    public Integer poll() {
        return heap.extractMax();
    }

    @Override
    public Integer peek() {
        return heap.peekMax();
    }

    @Override
    public boolean isEmpy() {
        return false;
    }

//    优先级队列中没有此方法
    @Override
    public int size() {
        return 0;
    }
}

4.3 优先级队列的实现(2)

public class PriorityQueues {
    private int[] elem;
    private int usedSize;

    public PriorityQueues() {
        this.elem = new int[10];
    }
    public PriorityQueues(int size) {
        this.elem = new int[size];
    }

    /**
     * 建堆的时间复杂度:nlogn
     *
     * @param array
     */
    public void createHeap(int[] array) {
        for (int i = 0; i < array.length; i++) {
            elem[i] = array[i];
            usedSize ++;
        }
        for (int i = (usedSize - 2)/2; i >= 0 ; i--) {
            shiftDown(i,usedSize);
        }
    }

    /**
     *
     * @param root 是每棵子树的根节点的下标
     * @param len  是每棵子树调整结束的结束条件
     * 向下调整的时间复杂度:O(logn),root从最后一个非叶子节点开始
     */
    private void shiftDown(int root,int len) {
        int j = 2 * root + 1;

        while (j < usedSize){
            if(j + 1 < usedSize && elem[j + 1] > elem[j]){
                j = j + 1;
            }
            if(elem[root] < elem[j]){
                swap(root,j);
                root = j;
                j = 2 * root + 1;
            }else {
                break;
            }
        }
    }

    private void swap(int root, int j) {
        int temp = elem[root];
        elem[root] = elem[j];
        elem[j] = temp;
    }


    /**
     * 入队:仍然要保持是大根堆
     * @param val
     */
    public void push(int val) {
        elem[usedSize] = val;
        usedSize ++;
        shiftUp(usedSize - 1);

    }

    private void shiftUp(int child) {
        int j = (child - 1) / 2;
        while (j >= 0 && elem[child] > elem[j]){
                swap(child,j);
                child = j;
                j = (child - 1) / 2;
        }
    }

    public boolean isFull() {
        if(usedSize == elem.length){
            return true;
        }
        return false;
    }

    /**
     * 出队【删除】:每次删除的都是优先级高的元素
     * 仍然要保持是大根堆
     */
    public void pollHeap() {
        if(isEmpty()){
            throw new IllegalArgumentException("queue is empty,cannot pop");
        }
        elem[0] = elem[usedSize - 1];
        elem[usedSize - 1] = 0;
        usedSize --;
        shiftDown(0,usedSize);
    }

    public boolean isEmpty() {
        if(usedSize == 0){
            return true;
        }
        return false;
    }

    /**
     * 获取堆顶元素
     * @return
     */
    public int peekHeap() {
        if(isEmpty()){
            throw new IllegalArgumentException("queue is empty,cannot peek");
        }
        return elem[0];
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < usedSize; i++) {
            sb.append(elem[i]).append(" ");
        }
        return sb.toString();
    }
}

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值