目录
1. 优先级队列概念
前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。
2. 优先级队列的模拟实现
JDK1.8中的PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整。
2.1 堆的概念
如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆(最大值在堆顶),根节点最小的堆叫做最小堆或小根堆(最小值在堆顶)。
堆的性质:
- 最大堆中某个节点的值总是不大于其父节点的值(最小堆中某个节点的值总是不小于其父节点的值);
- 堆总是一棵完全二叉树。
【注意】在最大堆中,深度越小,节点值越大?错节点值与深度无关!!!
2.2 堆的存储方式
从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储,
注意】对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。
将元素存储到数组中后,假设i为节点在数组中的下标,则有:
如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
如果2 i + 1 小于节点个数,则节点i的左孩子下标为2 i + 1,否则没有左孩子
如果2 i + 2 小于节点个数,则节点i的右孩子下标为2 i + 2,否则没有右孩子
2.3 堆的创建
2.3.1 堆向下调整
对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?
仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。
向下过程(以小堆为例):
- 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
- 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标记
- 将parent与较小的孩子child比较,如果:parent小于较小的孩子child,调整结束.否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子
- 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续上一步骤。
public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右
int child = 2 * parent + 1;
int size = array.length;
while (child < size) {
// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
if(child+1 < size && array[child+1] < array[child]){
child += 1;
}
// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
if (array[parent] <= array[child]) {
break;
}else{
// 将双亲与较小的孩子交换
int t = array[parent];
array[parent] = array[child];
array[child] = t;
// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
parent = child;
child = parent * 2 + 1;
}
}
}
【注意】在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析:
最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为
2.3.2 堆的创建
那对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?
public static void createHeap(int[] array) {
// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
for (int i = (array.length-2)>>1; i >= 0; i --) {
shiftDown(array, i);
}
}
2.3.3 建堆的时间复杂度
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
因此:建堆的时间复杂度为O(N)。
2.4 堆的插入与删除
2.4.1 堆的插入
堆的插入总共需要两个步骤:
- 先将元素放入到底层空间中(注意:空间不够时需要扩容)
- 将最后新插入的节点向上调整,直到满足堆的性质
public void shiftUp(int child) {
// 找到child的双亲
int parent = (child - 1) / 2;
while (child > 0) {
// 如果双亲比孩子大,parent满足堆的性质,调整结束
if (array[parent] > array[child]) {
break;
}
else{
// 将双亲与孩子节点进行交换
int t = array[parent];
array[parent] = array[child];
array[child] = t;
// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
child = parent;
parent = (child - 1) / 1;
}
}
}
2.4.2 堆的删除
【注意】堆的删除一定删除的是堆顶元素。具体如下:
- 将堆顶元素对堆中最后一个元素交换
- 将堆中有效数据个数减少一个
- 对堆顶元素进行向下调整
2.5 用堆模拟实现优先级队列
public class MyPriorityQueue {
// 演示作用,不再考虑扩容部分的代码
private int[] array = new int[100];
private int size = 0;
public void offer(int e) {
array[size++] = e;
shiftUp(size - 1);
}
public int poll() {
int oldValue = array[0];
array[0] = array[--size];
shiftDown(0);
return oldValue;
}
public int peek() {
return array[0];
}
}
3 常用接口介绍
3.1 PriorityQueue的特性
Java集合框架中提供了 PriorityQueue 和 PriorityBlockingQueue 两种类型的优先级队列, PriorityQueue 是线 程不安全的, PriorityBlockingQueue 是线程安全的 ,本文主要介绍 PriorityQueue 。
【关于PriorityQueue的使用要注意】1. 使用时必须导入 PriorityQueue 所在的包,即:2. PriorityQueue 中放置的 元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出ClassCastException 异常3. 不能 插入 null 对象,否则会抛出 NullPointerException4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容5. 插入和删除元素的时间复杂度为6. PriorityQueue 底层使用了堆数据结构7. PriorityQueue 默认情况下是小堆- -- 即每次获取到的元素都是最小的元素
3.2 PriorityQueue常用接口介绍
3.2.1 优先级队列的构造
// JDK的优先级队列
// 默认最小堆的实现
// 创建一个空的优先级队列,底层默认容量是11
PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacity
PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
ArrayList<Integer> list = new ArrayList<>();
list.add(4);
list.add(3);
list.add(2);
list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素
//默认是最小堆,此时的优先级,值越小,优先级越高
PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
System.out.println(q3.size());
System.out.println(q3.peek());
class IntCmp implements Comparator<Integer>{
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
}
public class TestPriorityQueue {
public static void main(String[] args) {
PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
p.offer(4);
p.offer(3);
p.offer(2);
p.offer(1);
p.offer(5);
System.out.println(p.peek());
}
}
3.2.2 插入/删除/获取优先级最高的元素
static void TestPriorityQueue2(){
int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知 , 接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
for (int e: arr) {
q.offer(e);
}
System.out.println(q.size()); // 打印优先级队列中有效元素个数
System.out.println(q.peek()); // 获取优先级最高的元素
// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素
q.poll();
q.poll();
System.out.println(q.size()); // 打印优先级队列中有效元素个数
System.out.println(q.peek()); // 获取优先级最高的元素
q.offer(0);
System.out.println(q.peek()); // 获取优先级最高的元素
// 将优先级队列中的有效元素删除掉,检测其是否为空
q.clear();
if(q.isEmpty()){
System.out.println("优先级队列已经为空!!!");
}else{
System.out.println("优先级队列不为空");
}
}
4. 堆的实现与优先级队列的实现
4.1 堆的实现
import java.util.ArrayList;
import java.util.List;
import java.util.NoSuchElementException;
public class MaxHeap {
// 具体保存元素的数组
private List<Integer> data;
// 堆中有效元素个数
private int size;
public MaxHeap() {
this(10);
}
public MaxHeap(int capacity) {
this.data = new ArrayList<>(capacity);
}
// 将普通二叉树堆化heapify 堆排序时间复杂度O(n) = nlogn,空间复杂度O(n)
public MaxHeap(int[] arr){
data = new ArrayList<>(arr.length);
for (int i:arr
) {
data.add(i);
size++;
}
for (int i = parent(size - 1); i >= 0 ; i--) {
siftDown(i);
}
}
public int extractMax(){
if(data.isEmpty()){
throw new NoSuchElementException("heap is empty");
}
int val = data.get(0);
data.set(0, data.get(size - 1));
data.remove(size - 1);
size--;
siftDown(0);
return val;
}
public int peekMax() {
if (data.isEmpty()) {
throw new NoSuchElementException("heap is empty!cannot peek!");
}
return data.get(0);
}
// 时间复杂度log n
private void siftDown(int i) {
while (leftChild(i) < size){
int j = leftChild(i);
if(j + 1 < size && data.get(j) < data.get(j + 1)){
j = j + 1;
}
// 此时j索引一定保存了左右子树的最大值
// data.get(j) < data.get(i)也可以!不过会多走一次循环
if(data.get(j) <= data.get(i)){
// 已经下沉到合适的位置
break;
}else {
swap(j, i);
i = j;
}
}
}
// 向最大堆中添加元素
public void add(int val) {
// 1.先尾插新元素到数组的尾部
data.add(val);
size++;
siftUp(size - 1);
}
// 元素上浮操作,当添加的元素比父节点大时,元素上浮
private void siftUp(int i) {
// 时间复杂度log n
while (i > 0 && data.get(i) > data.get(parent(i))){
// 只有当还有父节点且当前节点值 > 父节点时才交换
// int temp = data.get(i);
// data.set(i,data.get(parent(i)));
// data.set(parent(i),temp);
swap(i,parent(i));
// 继续向上判断
i = parent(i);
}
}
// 交换时只需要将下标索引传入即可
private void swap(int i, int parent) {
int temp = data.get(i);
data.set(i,data.get(parent));
data.set(parent,temp);
}
// 获取父节点
private int parent(int k){
return (k - 1)/2;
}
// 获取左孩子
private int leftChild(int k){
return 2 * k + 1;
}
// 获取右孩子
private int rightChild(int k){
return 2 * k + 2;//2*(k+1)
}
@Override
public String toString() {
return data.toString();
}
}
4.2 用最大堆实现优先级队列
MyQueue接口
public interface MyQueue<E> {
void offer( E val);
E poll();
E peek();
boolean isEmpy();
}
MyPriorityQueue 类
import bin_tree.heap.MaxHeap;
import seqlist.stack_queue.queue.MyQueue;
/**
* 最大堆构建优先级队列
*/
public class MyPriorityQueue implements MyQueue<Integer>{
private MaxHeap heap = new MaxHeap();
@Override
public void offer(Integer val) {
heap.add(val);
}
@Override
public Integer poll() {
return heap.extractMax();
}
@Override
public Integer peek() {
return heap.peekMax();
}
@Override
public boolean isEmpy() {
return false;
}
// 优先级队列中没有此方法
@Override
public int size() {
return 0;
}
}
4.3 优先级队列的实现(2)
public class PriorityQueues {
private int[] elem;
private int usedSize;
public PriorityQueues() {
this.elem = new int[10];
}
public PriorityQueues(int size) {
this.elem = new int[size];
}
/**
* 建堆的时间复杂度:nlogn
*
* @param array
*/
public void createHeap(int[] array) {
for (int i = 0; i < array.length; i++) {
elem[i] = array[i];
usedSize ++;
}
for (int i = (usedSize - 2)/2; i >= 0 ; i--) {
shiftDown(i,usedSize);
}
}
/**
*
* @param root 是每棵子树的根节点的下标
* @param len 是每棵子树调整结束的结束条件
* 向下调整的时间复杂度:O(logn),root从最后一个非叶子节点开始
*/
private void shiftDown(int root,int len) {
int j = 2 * root + 1;
while (j < usedSize){
if(j + 1 < usedSize && elem[j + 1] > elem[j]){
j = j + 1;
}
if(elem[root] < elem[j]){
swap(root,j);
root = j;
j = 2 * root + 1;
}else {
break;
}
}
}
private void swap(int root, int j) {
int temp = elem[root];
elem[root] = elem[j];
elem[j] = temp;
}
/**
* 入队:仍然要保持是大根堆
* @param val
*/
public void push(int val) {
elem[usedSize] = val;
usedSize ++;
shiftUp(usedSize - 1);
}
private void shiftUp(int child) {
int j = (child - 1) / 2;
while (j >= 0 && elem[child] > elem[j]){
swap(child,j);
child = j;
j = (child - 1) / 2;
}
}
public boolean isFull() {
if(usedSize == elem.length){
return true;
}
return false;
}
/**
* 出队【删除】:每次删除的都是优先级高的元素
* 仍然要保持是大根堆
*/
public void pollHeap() {
if(isEmpty()){
throw new IllegalArgumentException("queue is empty,cannot pop");
}
elem[0] = elem[usedSize - 1];
elem[usedSize - 1] = 0;
usedSize --;
shiftDown(0,usedSize);
}
public boolean isEmpty() {
if(usedSize == 0){
return true;
}
return false;
}
/**
* 获取堆顶元素
* @return
*/
public int peekHeap() {
if(isEmpty()){
throw new IllegalArgumentException("queue is empty,cannot peek");
}
return elem[0];
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < usedSize; i++) {
sb.append(elem[i]).append(" ");
}
return sb.toString();
}
}