【leetcode】Top-k问题

目录

1. 面试题 17.14. 最小K个数

解题思路

2. 前 K 个高频元素

解题思路

3. 前K个高频单词

解题思路


TOP-K问题:即求数据集合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
  •  前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

1. 面试题 17.14. 最小K个数

设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。

示例:

输入: arr = [1,3,5,7,2,4,6,8], k = 4

输出: [1,2,3,4]

解题思路

1. 改造JDK的最小堆为此时的最"大"堆(存放的是最小k个值,堆顶为最小k个值中的最大值)

        正常的升序即this - o 认为大的大, 反向 o - this 认为小的大

        o1(this) - o2:

                > 0 => o1 > o2

                =0 => o1 == o2

                <0 => o1 < o2

        o2 - o1(this) :

                > 0 => o1 < o2

                =0 => o1 == o2

                <0 => o1 > o2

2. 将数组中的元素依次入最大堆:堆中的元素小于k时正常入堆;堆中的元素大于k时,将堆顶poll(保证堆中只有k个值)

3. 此时队列中保存了最小的k个数字,将堆中的元素依次poll到要返回的数组中

public int[] smallestK(int[] arr, int k) {
        // 1.改造JDK的最小堆为此时的最"大"堆
        Queue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });
        for (int i : arr) {
            queue.offer(i);
            if (queue.size() > k) {
                queue.poll();
            }
        }
        // 此时队列中保存了最小的k个数字
        int[] result = new int[k];
        for (int i = 0; i < k; i++) {
            result[i] = queue.poll();
        }
        return result;
    }

2. 前 K 个高频元素

OJ:前 K 个高频元素

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2]

示例 2:

输入: nums = [1], k = 1 输出: [1]

解题思路

使用Map接口(Map是一个接口类,该类中存储的是<K,V>结构的键值对,并且K一定是唯一的,不能重复。)

times.getOrDefault(nums[i],0):返回 key 对应的 value,key 不存在,返回默认值

1. 扫描nums数组,将每个元素和出现的次数保存到Map接口中

2. 扫描Map接口,将出现频次最高的前k个Freq对象保存到优先级队列中

3. 从队列中取出这k个Freq的key值就是最终的结果

public int[] topKFrequent(int[] nums, int k) {
//        局部内部类
        class Freq {
            int key;// 出现的元素
            int times;//出现的频率
            Freq(int key, int value) {
                this.key = key;
                this.times = value;
            }
        }

        // 1.扫描nums数组,将每个元素和出现的次数保存到Map接口中
        Map<Integer,Integer> times = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            times.put(nums[i],times.getOrDefault(nums[i],0)+1);
        }
        Queue<Freq> queue = new PriorityQueue<>(new Comparator<Freq>() {
            @Override
            public int compare(Freq o1, Freq o2) {
                return o1.times - o2.times;
            }
        });

        // 2.扫描Map接口,将出现频次最高的前k个Freq对象保存到优先级队列中
        for (Map.Entry<Integer,Integer> i: times.entrySet()
             ) {
//            queue.offer(i);
            queue.offer(new Freq(i.getKey(),i.getValue()));
            if(queue.size() > k){
                queue.poll();
            }
        }

        // 3.从队列中取出这k个Freq的key值就是最终的结果
        int[] ret = new int[k];
        for (int i = 0; i < k; i++) {
            ret[i] = queue.poll().key;
        }
        return ret;
    }

3. 前K个高频单词

OJ:前K个高频单词

给定一个单词列表 words 和一个整数 k ,返回前 k 个出现次数最多的单词。

返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率, 按字典顺序 排序。

示例 1:

输入: words = ["i", "love", "leetcode", "i", "love", "coding"], k = 2

输出: ["i", "love"]

解析: "i" 和 "love" 为出现次数最多的两个单词,均为2次。 注意,按字母顺序 "i" 在 "love" 之前。

示例 2:

输入: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4

输出: ["the", "is", "sunny", "day"]

解析: "the", "is", "sunny" 和 "day" 是出现次数最多的四个单词, 出现次数依次为 4, 3, 2 和 1 次。

解题思路

1. 扫描nums数组,将每个元素和出现的次数保存到Map接口中

2. 扫描Map接口,将出现频次最高的前k个String保存到优先级队列(小堆)中

3. 从队列中取出这k个String使用头插放入ret链表中(使用头插是因为需要按单词出现频率由高到低排序,每次将队头放入链表的第一个)

4. 返回ret

public List<String> topKFrequent(String[] words, int k) {
        Map<String,Integer> map = new HashMap<>();
        for (String str:words
             ) {
            map.put(str,map.getOrDefault(str,0) + 1);
        }
//        取大用小
        Queue<String> queue = new PriorityQueue<>(new Comparator<String>() {
            @Override
            public int compare(String o1, String o2) {
                int o1times = map.get(o1);
                int o2times = map.get(o2);
                return o1times == o2times ? o2.compareTo(o1) : o1times - o2times;
            }
        });
        for (Map.Entry<String,Integer> i: map.entrySet()
        ) {
//            queue.offer(i);
            queue.offer(i.getKey());
            if(queue.size() > k){
                queue.poll();
            }
        }

//        List没有头插(数组),LinkedList(链表)才有
        LinkedList<String> ret = new LinkedList<>();
        while (!queue.isEmpty()){
            ret.addFirst(queue.poll());
        }
        return ret;
    }

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值