目录
- 前k个最大的元素,则建小堆
- 前k个最小的元素,则建大堆
1. 面试题 17.14. 最小K个数
设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。
示例:
输入: arr = [1,3,5,7,2,4,6,8], k = 4
输出: [1,2,3,4]
解题思路
1. 改造JDK的最小堆为此时的最"大"堆(存放的是最小k个值,堆顶为最小k个值中的最大值)
正常的升序即this - o 认为大的大, 反向 o - this 认为小的大
o1(this) - o2:
> 0 => o1 > o2
=0 => o1 == o2
<0 => o1 < o2
o2 - o1(this) :
> 0 => o1 < o2
=0 => o1 == o2
<0 => o1 > o2
2. 将数组中的元素依次入最大堆:堆中的元素小于k时正常入堆;堆中的元素大于k时,将堆顶poll(保证堆中只有k个值)
3. 此时队列中保存了最小的k个数字,将堆中的元素依次poll到要返回的数组中
public int[] smallestK(int[] arr, int k) {
// 1.改造JDK的最小堆为此时的最"大"堆
Queue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
for (int i : arr) {
queue.offer(i);
if (queue.size() > k) {
queue.poll();
}
}
// 此时队列中保存了最小的k个数字
int[] result = new int[k];
for (int i = 0; i < k; i++) {
result[i] = queue.poll();
}
return result;
}
2. 前 K 个高频元素
给你一个整数数组
nums
和一个整数k
,请你返回其中出现频率前k
高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2]
示例 2:
输入: nums = [1], k = 1 输出: [1]
解题思路
使用Map接口(Map是一个接口类,该类中存储的是<K,V>结构的键值对,并且K一定是唯一的,不能重复。)
times.getOrDefault(nums[i],0):返回 key 对应的 value,key 不存在,返回默认值
1. 扫描nums数组,将每个元素和出现的次数保存到Map接口中
2. 扫描Map接口,将出现频次最高的前k个Freq对象保存到优先级队列中
3. 从队列中取出这k个Freq的key值就是最终的结果
public int[] topKFrequent(int[] nums, int k) {
// 局部内部类
class Freq {
int key;// 出现的元素
int times;//出现的频率
Freq(int key, int value) {
this.key = key;
this.times = value;
}
}
// 1.扫描nums数组,将每个元素和出现的次数保存到Map接口中
Map<Integer,Integer> times = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
times.put(nums[i],times.getOrDefault(nums[i],0)+1);
}
Queue<Freq> queue = new PriorityQueue<>(new Comparator<Freq>() {
@Override
public int compare(Freq o1, Freq o2) {
return o1.times - o2.times;
}
});
// 2.扫描Map接口,将出现频次最高的前k个Freq对象保存到优先级队列中
for (Map.Entry<Integer,Integer> i: times.entrySet()
) {
// queue.offer(i);
queue.offer(new Freq(i.getKey(),i.getValue()));
if(queue.size() > k){
queue.poll();
}
}
// 3.从队列中取出这k个Freq的key值就是最终的结果
int[] ret = new int[k];
for (int i = 0; i < k; i++) {
ret[i] = queue.poll().key;
}
return ret;
}
3. 前K个高频单词
给定一个单词列表
words
和一个整数k
,返回前k
个出现次数最多的单词。返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率, 按字典顺序 排序。
示例 1:
输入: words = ["i", "love", "leetcode", "i", "love", "coding"], k = 2
输出: ["i", "love"]
解析: "i" 和 "love" 为出现次数最多的两个单词,均为2次。 注意,按字母顺序 "i" 在 "love" 之前。
示例 2:
输入: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
输出: ["the", "is", "sunny", "day"]
解析: "the", "is", "sunny" 和 "day" 是出现次数最多的四个单词, 出现次数依次为 4, 3, 2 和 1 次。
解题思路
1. 扫描nums数组,将每个元素和出现的次数保存到Map接口中
2. 扫描Map接口,将出现频次最高的前k个String保存到优先级队列(小堆)中
3. 从队列中取出这k个String使用头插放入ret链表中(使用头插是因为需要按单词出现频率由高到低排序,每次将队头放入链表的第一个)
4. 返回ret
public List<String> topKFrequent(String[] words, int k) {
Map<String,Integer> map = new HashMap<>();
for (String str:words
) {
map.put(str,map.getOrDefault(str,0) + 1);
}
// 取大用小
Queue<String> queue = new PriorityQueue<>(new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
int o1times = map.get(o1);
int o2times = map.get(o2);
return o1times == o2times ? o2.compareTo(o1) : o1times - o2times;
}
});
for (Map.Entry<String,Integer> i: map.entrySet()
) {
// queue.offer(i);
queue.offer(i.getKey());
if(queue.size() > k){
queue.poll();
}
}
// List没有头插(数组),LinkedList(链表)才有
LinkedList<String> ret = new LinkedList<>();
while (!queue.isEmpty()){
ret.addFirst(queue.poll());
}
return ret;
}