组合数 C N M C_{N}^{M} CNM
二项式定理(a+b)n= ∑ i = 0 n \sum_{i=0}^n ∑i=0n C n i C_{n}^{i} Cniaib(n-i)
证明:
1.数学归纳法(就不进行这个方法的证明了)
2.展开为(a+b) ∗ * ∗(a+b) ∗ * ∗… ∗ * ∗(a+b),对于每一项只有两个选择是a或者b,当我们假定选择了i个a时,就需要选择n − - −i个b,然后根据组合数,只需要选择任意i个a的组合就可以,得证
一些简单的性质
1. C N M C_{N}^{M} CNM= n ( n − 1 ) . . . ( n − m + 1 ) m ( m − 1 ) ( m − 2 ) . . . . 1 \frac{n(n-1)...(n-m+1)}{m(m-1)(m-2)....1} m(m−1)(m−2)....1n(n−1)...(n−m+1)= n ! m ! ( n − m ) ! \frac{n!}{m!(n-m)!} m!(n−m)!n!
2. C N M C_{N}^{M} CNM= C N N − M C_{N}^{N-M} CNN−M
3. C N M C_{N}^{M} CNM= C N − 1 M C_{N-1}^{M} CN−1M + + + C N − 1 M − 1 C_{N-1}^{M-1} CN−1M−1
4. ∑ i = 0 N \sum_{i=0}^N ∑i=0N C N i C_{N}^{i} CNi =2N
证明
性质2:组合数的定义是在n个元素中取m个的集合,而取出m个剩下的就是n − - −m个,一一对应所以成立
性质3:对于从n个中选择m个,考虑抽出某一个,这一个有不选和选两种情况,分别对应 C N − 1 M C_{N-1}^{M} CN−1M和 C N − 1 M − 1 C_{N-1}^{M-1} CN−1M−1
性质4:对于n个元素每一个元素都有取或者不取两种选择,所以总的情况就是2n
组合数的求法
方法一:根据性质1,可以先预处理出1到N的阶乘,因为涉及到除法取模,也需要求出在%p下的逆元,可以在O(NlogN)预处理O(1) 查询
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e5+10,mod=1e9+7;
int qmi(int a,int b)
{
int res=1;
while(b)
{
if(b&1) res=1ll*res*a%mod;
b>>=1;
a=1ll*a*a%mod;
}
return res;
}
int fact[N],infact[N];
void init()
{
fact[0]=1;
fact[1]=1;
for(int i=2;i<N;i++) fact[i]=1ll*fact[i-1]*i%mod;
infact[N-1]=qmi(fact[N-1],mod-2);
for(int i=N-2;i>=0;i--)
{
infact[i]=1ll*infact[i+1]*(i+1)%mod;
}
}
int main()
{
int n;cin>>n;
init();
while (n -- )
{
int a,b;cin>>a>>b;
cout<<1ll*fact[a]*infact[b]%mod*infact[a-b]%mod<<endl;
}
return 0;
}
方法二
根据性质三,在O(N2)预处理出所有结果,O(1)查询
代码:
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
const int N=2010;
int f[N][N];
int main()
{
for(int i=0;i<N;i++) f[i][0]=1;
for(int i=1;i<N;i++)
{
for(int j=0;j<=i;j++)
f[i][j]=(f[i-1][j-1]+f[i-1][j])%mod;
}
int n;cin>>n;
while (n -- )
{
int a,b;cin>>a>>b;
cout<<f[a][b]<<endl;
}
return 0;
}
方法三:Lucas定理 前提p是质数
C N M C_{N}^{M} CNM ≡ \equiv ≡ C N m o d P M m o d P C_{NmodP}^{MmodP} CNmodPMmodP ∗ * ∗ C N / P M / P C_{N/P}^{M/P} CN/PM/P (mod P)
时间复杂度p ∗ * ∗ l o g p log_p logp ∗ * ∗ l o g p N log_pN logpN
证明(有点难)
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll a,b;
int p;
int qmi(ll a,ll b,int p)
{
int res=1;
while(b)
{
if(b&1) res=1ll*res*a%p;
b>>=1;
a=1ll*a*a%p;
}
return res;
}
int C(ll a,ll b,int p)
{
int res=1;
for(int i=0;i<b;i++)
{
res=1ll*res*(a-i)%p*qmi(i+1,p-2,p)%p;
}
return res;
}
int lucas(ll a,ll b,int p)
{
if(a<p&&b<p) return C(a,b,p);
return 1ll*lucas(a%p,b%p,p)*lucas(a/p,b/p,p)%p;
}
int main()
{
int n;cin>>n;
while(n--)
{
cin>>a>>b>>p;
cout<<lucas(a,b,p)<<endl;
}
}