标题:Novel Joint Transfer Network for Unsupervised Bearing Fault Diagnosis From Simulation Domain to Experimental Domain
期刊:IEEE-ASME TRANSACTIONS ON MECHATRONICS (2022)
作者:Yiming Xiao, Haidong Shao,SongYu Han, Zhiqiang Huo,and Jiafu Wan
解决的问题:迁移诊断场景仅限于实验域,跨域边缘分布和条件分布难以同时对齐,每个源域样本在域自适应过程中被分配同等重要。
解决的方法:NJTN(一种新的从仿真域到实验域的无监督轴承故障诊断联合传输网络)
创新:
①探索数据-物理耦合驱动故障诊断方式(利用丰富故障标签信息的仿真数据构建源域,减少对试验台的依赖,满足不同工况下故障数据要求。)
②设计JMMD(嵌入联合MMD)的改进损失函数,实现无监督场景下边缘分布和条件分布同时对齐。
③基于域相似度开发了一种权重分配机制,抑制负迁移。
01 创新1的具体内容
采用集中质量法建立转子-轴承系统仿真模型来生成振动响应以构建源域