目录
1.最大公约数求法
1.1辗转相除法
设有两整数a和b:
- a%b得余数c
- 若c==0,则b即为两数的最大公约数
- 若c!=0,则a=b,b=c,再回去执行第一步。
例如:求27和15的最大公约数过程为:
- 27÷15 余12
- 15÷12 余3
- 12÷3 余0
因此,3即为最大公约数。
1.2相减法
设有两整数a和b:
- 若a>b,则a=a-b
- 若a<b,则b=b-a
- 若a==b,则a(或b)即为两数的最大公约数
- 若a!=b,则再回去执行第一步。
例如:求27和15的最大公约数过程为:
- 27-15=12( 15>12 )
- 15-12=3( 12>3 )
- 12-3=9( 9>3 )
- 9-3=6( 6>3 )
- 6-3=3( 3==3 )
因此,3即为最大公约数。
2.最小公倍数求法
最小公倍数=两整数的乘积÷最大公约数
3.代码实现
#include <stdio.h>
int main()
{
int m,n,max,min,b,c;
printf("请输入两个整数:\n");
scanf("%d%d",&m,&n);
c=m%n;
b=m*n;
while(c!=0)
{
m=n;
n=c;
c=m%n;
}
max=n;
min=b/max;
printf("\n最大公约数为:%d\n最小公倍数为:%d\n",max,min);
return 0;
}
4.结果展示