深度学习——损伤函数(dice_loss)

'dice_loss' 代表的是一种常用于图像分割任务的损失函数,Dice Loss。该损失函数基于 Dice 系数(Dice Coefficient)进行定义,可以用于评估预测分割图像与真实分割图像之间的相似度。

  • 在二分类问题中,Dice 系数的计算公式为:

Dice = 2 * (|X ∩ Y|) / (|X| + |Y|)

其中,X 表示预测分割图像中为正的像素集合,Y 表示真实分割图像中为正的像素集合,|X| 和 |Y| 分别表示像素集合的大小,|X ∩ Y| 表示两个像素集合的交集大小。

  • Dice Loss 的定义基于 Dice 系数的倒数,即:

DiceLoss = 1 - Dice

因此,当 Dice 系数越大,Dice Loss 越小,表示预测分割图像与真实分割图像之间的相似度越高,模型的性能越好。反之,当 Dice 系数越小,Dice Loss 越大,表示预测分割图像与真实分割图像之间的相似度越低,模型的性能越差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vous oublie@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值