python的数据分析三件套详细介绍

一、常用三件套

三大神器(numpy,pandas,matplotlib)。接下来就一一列举常用的方法。

注意先了解两个必备函数:
enumerate() 函数是Python内置函数之一,用于将一个可迭代对象(如列表、元组或字符串)转换为一个枚举对象,同时返回索引和对应的值。具体来说,它将每个元素与一个序号配对,使得在迭代过程中可以同时获得每个元素的值和其在序列中的索引。

enumerate() 函数的主要作用是在迭代过程中同时获取元素值和其对应的索引。在数据分析中常用它利用for循环取出索引 i 和值 name。

递推式构造列表(list comprehension)创建了毕达哥拉斯三元组:

>>> [(x,y,z) for x in range(1,30) for y in range(x,30) for z in range(y,30) if x**2 + y**2 == z**2]
[(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8, 15, 17), (9, 12, 15), (10, 24, 26), (12, 16, 20), (15, 20, 25), (20, 21, 29)]

## 或者简单的如下
>>> scores = [[random.randrange(50,101) for _ in range(3)] for _ in range(5)]

二、numpy库

NumPy是Python语言的一个科学计算库,它提供了高性能的多维数组对象和相关工具,可以用于处理数组、矩阵、数值计算等各种数学任务。以下是 NumPy 库中一些常见的函数及其用法:

axis() 是一个 NumPy 中的函数,用于沿着指定的轴执行操作。它用于指定在数组的哪个轴上应用函数,以便在数组的不同维度上执行计算。常用于:

# 在n维数组上,axis = 0 是对列操作;axis = 1是对行操作。
sorces.max(axis = 0)

np.array():创建一个 NumPy 数组。例如:

import numpy as np

a = np.array([1, 2, 3, 4])
print(a)

输出结果为:[1 2 3 4]。

np.arange():创建一个指定范围内的等差数列。例如:

import numpy as np

a = np.arange(0, 10, 2)
print(a)

输出结果为:[0 2 4 6 8]。

np.linspace():创建一个指定范围内的等间隔数列。例如:

import numpy as np

a = np.linspace(0, 10, 5)
print(a)

输出结果为:[ 0. 2.5 5. 7.5 10. ]。

np.zeros():创建一个指定形状的全零数组。例如:

import numpy as np

a = np.zeros((3, 3))
print(a)

输出结果为:

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

np.ones():创建一个指定形状的全一数组。例如:

import numpy as np

a = np.ones((2, 2))
print(a)

输出结果为:
[[1. 1.]
[1. 1.]]

np.eye():创建一个指定大小的单位矩阵。例如:

import numpy as np

a = np
<think>好的,用户想了解用于大数据处理的Python框架以及相关的学习资源和最佳实践。首先,我需要回忆一下常见的Python大数据处理框架,比如Apache Spark的PySpark、Dask、Ray,还有像Pandas这样的库,虽然主要用于单机,但在大数据预处理中也很重要。另外,Hadoop生态中的工具如PyDoop可能也需要提及。 接下来要考虑用户可能的学习路径。根据用户提供的引用,特别是引用[1]和[2],他们提到了学习Python大数据需要基础知识、核心库、实战技能和持续学习。所以回答的结构应该按照这几个方面来组织,比如分阶段的学习路线,从基础到高级。 然后需要整合学习资源。引用[2]提到了Python各个方向的学习路线,包括安装包、爬虫、数据分析等,可能需要推荐一些在线教程或书籍。比如官方文档、Coursera的课程、书籍如《Python for Data Analysis》等。 最佳实践部分应包括项目结构、性能优化、容错处理和数据安全。这些内容需要结合框架的特性,比如PySpark的RDD操作、Dask的分布式计算,以及使用云平台如AWS或Databricks。 还要注意用户提到的引用[3],关于HiveQL和易用性,这可能涉及到与Hadoop生态系统的集成,比如Hive和Spark的结合使用。不过用户的问题主要围绕Python框架,所以可能重点放在PySpark上,因为它与Hadoop生态兼容。 用户可能需要知道如何开始学习,比如先掌握Python基础,再学习Pandas,然后过渡到PySpark和Dask。同时,实践项目很重要,比如分析大型数据集或实时处理。 需要验证每个提到的框架是否有可靠的学习资源,比如PySpark的官方文档和Databricks的教程。另外,最佳实践中的代码示例要简短且正确,比如展示一个PySpark的Word Count例子。 最后,确保回答结构清晰,分点列出框架、学习资源、学习路线、最佳实践,并在末尾生成相关问题。同时,引用标记要正确对应,如引用[1]、[2]、[3]的来源。</think># Python大数据处理框架学习指南 ## 一、主流Python大数据处理框架 1. **PySpark** 基于Apache Spark的Python API,支持分布式数据计算,具备流处理、机器学习和图计算能力。核心数据结构包括RDD和DataFrame,支持SQL查询和复杂分析任务[^3]。 2. **Dask** 并行计算框架,可处理超出内存限制的数据集,与NumPy/Pandas保持API兼容性。支持动态任务调度,适用于复杂计算流水线。 3. **Ray** 新兴分布式计算框架,擅长机器学习任务,提供Actor模型实现细粒度任务调度,支持强化学习等场景。 $$ T_{processing} = \frac{Data_{size}}{Cluster_{nodes} \times Core_{speed}} } $$ ## 二、系统化学习路径(参考引用[1][2]) ### 1. 基础阶段(1-3个月) - Python语法精要:列表推导式、装饰器、生成器 - 数据处理三件套: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt ``` - SQL基础:掌握JOIN操作和窗口函数 ### 2. 框架专项(2-4个月) - **PySpark核心组件**: ```python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("demo").getOrCreate() df = spark.read.csv("hdfs://data.csv") ``` - **Dask进阶**: ```python import dask.dataframe as dd ddf = dd.read_parquet('s3://bucket/*.parquet') ``` ### 3. 实战提升(持续) - 数据集特征:处理1TB+日志数据 - 典型场景:用户行为分析、实时风控系统 ## 三、推荐学习资源 1. **官方文档** - [Spark官方指南](https://spark.apache.org/docs/latest/api/python/) - [Dask最佳实践](https://docs.dask.org/en/stable/) 2. **体系化课程** - Coursera《Big Data Analytics with PySpark》 - 书籍《High Performance Python for Data Analytics》 3. **工具套装** ```python # 典型大数据技术栈 conda install dask pyspark fastparquet ``` ## 四、最佳实践原则 1. **数据分区策略** 按时间或业务主键分区,提升并行效率: ```python df.repartition(100, "date_column") ``` 2. **内存管理** 使用`persist()`缓存常用数据集,通过序列化优化减少内存占用: ```python rdd.persist(StorageLevel.MEMORY_AND_DISK) ``` 3. **监控调优** - Spark UI分析Stage执行情况 - 使用`explain()`查看执行计划 4. **云平台集成** - Databricks平台Spark优化 - AWS EMR集群部署
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值