python的数据分析三件套详细介绍

一、常用三件套

三大神器(numpy,pandas,matplotlib)。接下来就一一列举常用的方法。

注意先了解两个必备函数:
enumerate() 函数是Python内置函数之一,用于将一个可迭代对象(如列表、元组或字符串)转换为一个枚举对象,同时返回索引和对应的值。具体来说,它将每个元素与一个序号配对,使得在迭代过程中可以同时获得每个元素的值和其在序列中的索引。

enumerate() 函数的主要作用是在迭代过程中同时获取元素值和其对应的索引。在数据分析中常用它利用for循环取出索引 i 和值 name。

递推式构造列表(list comprehension)创建了毕达哥拉斯三元组:

>>> [(x,y,z) for x in range(1,30) for y in range(x,30) for z in range(y,30) if x**2 + y**2 == z**2]
[(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8, 15, 17), (9, 12, 15), (10, 24, 26), (12, 16, 20), (15, 20, 25), (20, 21, 29)]

## 或者简单的如下
>>> scores = [[random.randrange(50,101) for _ in range(3)] for _ in range(5)]

二、numpy库

NumPy是Python语言的一个科学计算库,它提供了高性能的多维数组对象和相关工具,可以用于处理数组、矩阵、数值计算等各种数学任务。以下是 NumPy 库中一些常见的函数及其用法:

axis() 是一个 NumPy 中的函数,用于沿着指定的轴执行操作。它用于指定在数组的哪个轴上应用函数,以便在数组的不同维度上执行计算。常用于:

# 在n维数组上,axis = 0 是对列操作;axis = 1是对行操作。
sorces.max(axis = 0)

np.array():创建一个 NumPy 数组。例如:

import numpy as np

a = np.array([1, 2, 3, 4])
print(a)

输出结果为:[1 2 3 4]。

np.arange():创建一个指定范围内的等差数列。例如:

import numpy as np

a = np.arange(0, 10, 2)
print(a)

输出结果为:[0 2 4 6 8]。

np.linspace():创建一个指定范围内的等间隔数列。例如:

import numpy as np

a = np.linspace(0, 10, 5)
print(a)

输出结果为:[ 0. 2.5 5. 7.5 10. ]。

np.zeros():创建一个指定形状的全零数组。例如:

import numpy as np

a = np.zeros((3, 3))
print(a)

输出结果为:

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

np.ones():创建一个指定形状的全一数组。例如:

import numpy as np

a = np.ones((2, 2))
print(a)

输出结果为:
[[1. 1.]
[1. 1.]]

np.eye():创建一个指定大小的单位矩阵。例如:

import numpy as np

a = np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值