离散数学 极大元,极小元,最大元,最小元,上界,上确界,下界,下确界

本文深入探讨了集合论中的最小元和极小元概念。最小元是指在特定集合中与其他所有元素都有比较关系的元素,而极小元则只需满足没有其他元素在其下方。这一概念在数学的哈斯图表示中尤为显著,对于理解部分序关系和数学基础至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例题
解答

理解盖住关系 COV A;

msdn7
msdn
msdn2
最小元: 是集合中最小的元素,它和集合中其他的元素都可比(它要和其他元素都有整数关系,在哈斯图中表现为和其他元素都有线段相连)
极小元: 不一定要和集合中的元素都可比,只要没有比它更小(在其他元素的下方)的元素即可。
msdn3


msdn4
msdn5

在网络中的讨论以及学术文献里,极小最小元的概念通常出现在偏序集或者更一般的有序集合的研究中。这两个概念虽然听起来相似但有着不同的含义。 ### 极小 (Minimal Element) 在一个给定的非空集合S及其上的偏序关系≤中,素m属于S被称为S的一个极小当且仅当不存在任何其他素s属于S使得$s \leq m$并且$m \neq s$成立。换句话说,在这个特定的关系下没有比它还小的其它成员(除了可能等于自己)。一个集合可以拥有超过一个极小;事实上,只要两个极小之间不可比较,则它们都可以被视为独立的极小。 ### 最小元 (Minimum Element) 同样地考虑上面提到的那种情况下的同一个集合S,若存在某个素l也属于此集合,并对于所有的x∈S都有$l ≤ x$成立的话,那么就称作l是整个集合里的唯一最小元。这意味着在这个设定好的排序规则之下,没有任何其他的成员能小于或等于这个特别指出的小值了——它是绝对意义上的“最底部”。 从以上描述可以看出主要差异在于: - **唯一性**:最小元在整个集合范围内是唯一的,而极小可以在同一集合中有多个。 - **全局对比 vs 局部对比**:要成为最小元,必须能够与其他所有成员相比较并证明自身是最小的那个;相反,成为一个极小只需要保证没有直接较小者即可。 至于应用场景方面, - 在数据库查询优化领域,人们可能会遇到关于如何选择最优索引的问题,这里涉及到的数据结构往往可以用偏序来建模,从而利用极小等概念帮助定最佳方案。 - 计算机科学中的算法设计也会频繁触及此类理论,比如贪心策略的选择或是动态规划状态转移方程的设计都离不开对这类数学性质的理解。 - 组合数学与离散数学也是广泛应用这些概念的地方之一,特别是在处理图论问题时,节点间的优先级排列经常依赖于类似的思想来进行有效求解。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值