数据结构C++——二叉排序树
文章目录
一、前言
二叉排序树用到了二叉树中序遍历的知识,以及树的相关操作部分的知识,由于笔者在之前的文章中已介绍过树的知识,在此不再过多赘述,对此部分不太了解的读者欢迎移步此文章,共同学习!:
数据结构C++——二叉树的遍历(递归和非递归)及一些简单操作
二、二叉排序树的相关概念
(1)二叉排序树:又称二叉查找树,它是一种对排序和查找都很有用的特殊二叉树。
(2)二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
a、若它的左子树不空,则左子树上所有结点的值均小千它的根结点的值;
b、若它的右子树不空,则右子树上所有结点的值均大千它的根结点的值;
c、它的左、 右子树也分别为二叉排序树。
(3)二叉排序树是递归定义的。 由定义可以得出二叉排序树的一个重要性质:中序遍历一棵二叉树时可以得到一个结点值递增的有序序列。
三、树表的查找
①二叉排序树的存储表示
二叉排序树的存储表示
/*-----------二叉排序树的二叉链表的存储表示-----------*/
#define ENDFLAG 999
typedef int KeyType;
typedef int InfoType;
typedef struct {
KeyType key;//关键子项
InfoType otherinfo;//其他数据域
}ElemType;
typedef struct BSTNode {
ElemType data;//每个结点的数据域包括关键字项和其他数据项
struct BSTNode* lchild, * rchild;//左右孩子指针
}BSTNode,*BSTree;
②二叉排序树的递归查找
二叉排序树的递归查找
二叉排序树递归查找的算法思路:
1:若传入关键字值小于此时的树节点值,则递归遍历树的左子树
2:若传入关键字值大于此时的树节点值,则递归遍历树的右子树
3、若此时关键字值等于此时树节点值,则返回指向该数据元素结点的指针,否则返回空指针
/*-----------二叉排序树的查找--------------*/
/*--------- 二叉排序树的递归查找-----------*/
BSTree SearchBST(BSTree T, KeyType key) {
//在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素
//若查找成功,则返回指向该数据元素结点的指针,否则返回空指针
if ((!T) || key == T->data.key) return T;//查找结束
else if (key < T->data.key) return SearchBST(T->lchild, key);//在左子树中继续查找
else return SearchBST(T->rchild, key);//在右子树中继续查找
}
③二叉排序树的插入
二叉排序树的插入
二叉排序树的插入算法思路:
1:若传入关键字值小于此时树结点值,则插入到树的左子树
2:若传入关键字值大于此时树结点值,则插入到树的右子树
3:找到插入位置后,生成新节点S,将将S的数据域置为e,新结点S作为叶子结点,将S链接到已找到的插入位置
/*----------二叉排序树的插入------------*/
void InsertBST(BSTree& T, ElemType e) {
if (!T) {
BSTNode* S = new BSTNode;//生成新结点*S
S->data = e;//新结点*S的数据域置为e
S->lchild = S->rchild = NULL;//新结点*S作为叶子结点
T = S;//把新结点*S链接到已找到的插入位置
}
else if (e.key < T->data.key)
InsertBST(T->lchild, e);//将*S插入左子树
else if (e.key > T->data.key)
InsertBST(T->rchild, e);//将*S插入右子树
}
④二叉排序树的创建
二叉排序树的创建
二叉排序树的创建算法思路:
1:预定义一个输入结束值ENDFLAG
2:不断输入关键字key,调用InsertBST()函数将树元素插入到树中
/*----------二叉排序树的创建-----------*/
void CreatBST(BSTree& T) {
//依次读入一个关键字为key的结点,将此结点插入二叉排序树T中
T = NULL;//将二叉排序树T初始化为空树
ElemType e;
cin >> e.key;
while (e.key != ENDFLAG) {
InsertBST(T, e);
cin >> e.key;
}
InsertBST(T, e);
}
⑤二叉排序树的删除
二叉排序树的删除
二叉排序树的删除算法思路:
1:找到传入关键字在二叉排序树中的位置,p指向该位置,f指向p的双亲结点
2:当删除结点为叶子结点时,直接删除此结点即刻
3:当删除结点无左子树时或无右子树时,删除结点接上p的左子树或右子树即可
4:若删除结点有左子树和右子树,则找到该结点的直接前驱,即左子树的右下结点,用前驱结点替换被删除结点。
/*---------二叉排序树的删除----------*/
void DeleteBST(BSTree& T, KeyType key) {
//从二叉排序树T中删除关键字等于key的结点
BSTNode* p = new BSTNode;
BSTNode* f = new BSTNode;
p = T; f = NULL;//初始化
/*--------------下面的while循环从根开始查找关键字等于key的结点*p----------*/
while (p) {
if (p->data.key == key) break;//找到关键字等于key的结点*p,结束循环
f = p;//*f为*p的双亲结点
if (p->data.key > key) p = p->lchild;//在*p的左子树中继续查找
else p = p->rchild;//在*p的右子树中继续查找
}
if (!p) return;//找不到被删结点则返回
/*------考虑3种情况实现p所指子树内部的处理:*p左右子树均不空、无右子树、无左子树----*/
BSTNode* q = new BSTNode;
q = p;
if ((p->lchild) && (p->rchild)) {//被删结点*p左右子树均不空
BSTNode* s = new BSTNode;
s = p->lchild;
while (s->rchild) {//在*p的左子树中继续查找其前驱结点,即右下结点
q = s;
s = s->rchild;//向右到尽头
}
p->data = s->data;//s指向被删结点的“前驱”
if (q != p) q->rchild = s->lchild;//重接*q的右子树
else q->lchild = s->lchild;//重接*q的左子树
delete s;
return;
}
else if (!p->rchild)//被删结点*p无右子树,只需重接其左子树
p = p->lchild;
else if (!p->lchild)//被删结点*p无左子树,只需重接其右子树
p = p->rchild;
/*---------将p所指的子树挂接到其双亲结点*f相应的位置---------*/
if (!f) T = p;//被删结点为根结点
else if (q == f->lchild) f->lchild = p;//挂接到*f的左子树位置
else f->rchild = p;//挂接到*f的右子树位置
delete q;
}
四、完整测试代码
测试代码
#include<iostream>
using namespace std;
/*-----------二叉排序树的二叉链表的存储表示-----------*/
#define ENDFLAG 999
typedef int KeyType;
typedef int InfoType;
typedef struct {
KeyType key;//关键子项
InfoType otherinfo;//其他数据域
}ElemType;
typedef struct BSTNode {
ElemType data;//每个结点的数据域包括关键字项和其他数据项
struct BSTNode* lchild, * rchild;//左右孩子指针
}BSTNode,*BSTree;
/*-----------二叉排序树的查找--------------*/
/*--------- 二叉排序树的递归查找-----------*/
BSTree SearchBST(BSTree T, KeyType key) {
//在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素
//若查找成功,则返回指向该数据元素结点的指针,否则返回空指针
if ((!T) || key == T->data.key) return T;//查找结束
else if (key < T->data.key) return SearchBST(T->lchild, key);//在左子树中继续查找
else return SearchBST(T->rchild, key);//在右子树中继续查找
}
/*----------二叉排序树的插入------------*/
void InsertBST(BSTree& T, ElemType e) {
if (!T) {
BSTNode* S = new BSTNode;//生成新结点*S
S->data = e;//新结点*S的数据域置为e
S->lchild = S->rchild = NULL;//新结点*S作为叶子结点
T = S;//把新结点*S链接到已找到的插入位置
}
else if (e.key < T->data.key)
InsertBST(T->lchild, e);//将*S插入左子树
else if (e.key > T->data.key)
InsertBST(T->rchild, e);//将*S插入右子树
}
/*----------二叉排序树的创建-----------*/
void CreatBST(BSTree& T) {
//依次读入一个关键字为key的结点,将此结点插入二叉排序树T中
T = NULL;//将二叉排序树T初始化为空树
ElemType e;
cin >> e.key;
while (e.key != ENDFLAG) {
InsertBST(T, e);
cin >> e.key;
}
InsertBST(T, e);
}
/*---------二叉排序树的删除----------*/
void DeleteBST(BSTree& T, KeyType key) {
//从二叉排序树T中删除关键字等于key的结点
BSTNode* p = new BSTNode;
BSTNode* f = new BSTNode;
p = T; f = NULL;//初始化
/*--------------下面的while循环从根开始查找关键字等于key的结点*p----------*/
while (p) {
if (p->data.key == key) break;//找到关键字等于key的结点*p,结束循环
f = p;//*f为*p的双亲结点
if (p->data.key > key) p = p->lchild;//在*p的左子树中继续查找
else p = p->rchild;//在*p的右子树中继续查找
}
if (!p) return;//找不到被删结点则返回
/*------考虑3种情况实现p所指子树内部的处理:*p左右子树均不空、无右子树、无左子树----*/
BSTNode* q = new BSTNode;
q = p;
if ((p->lchild) && (p->rchild)) {//被删结点*p左右子树均不空
BSTNode* s = new BSTNode;
s = p->lchild;
while (s->rchild) {//在*p的左子树中继续查找其前驱结点,即右下结点
q = s;
s = s->rchild;//向右到尽头
}
p->data = s->data;//s指向被删结点的“前驱”
if (q != p) q->rchild = s->lchild;//重接*q的右子树
else q->lchild = s->lchild;//重接*q的左子树
delete s;
return;
}
else if (!p->rchild)//被删结点*p无右子树,只需重接其左子树
p = p->lchild;
else if (!p->lchild)//被删结点*p无左子树,只需重接其右子树
p = p->rchild;
/*---------将p所指的子树挂接到其双亲结点*f相应的位置---------*/
if (!f) T = p;//被删结点为根结点
else if (q == f->lchild) f->lchild = p;//挂接到*f的左子树位置
else f->rchild = p;//挂接到*f的右子树位置
delete q;
}
/*------------二叉树的中序遍历------------*/
void InorderTree(BSTree T) {
if (T)
{
InorderTree(T->lchild);
cout << T->data.key << " ";
InorderTree(T->rchild);
}
}
int main() {
BSTree T = NULL;
CreatBST(T);//创建一棵二叉排序树
InorderTree(T);//中序遍历二叉树
cout << endl;
cout << "请输入您要查询的元素:" << endl;
int k = 0;
cin >> k;
BSTree T1 = NULL;//定义T1用来接收查找结果
T1 = SearchBST(T, k);
if (T1) cout << "存在此元素!" << endl;
else cout << "不存在此元素!" << endl;
int key = 0;
cout << "请输入您要删除的元素:" << endl;
cin >> key;
DeleteBST(T, key);//删除元素
InorderTree(T);//再次中序遍历二叉树
return 0;
}
输入:
53 17 78 9 45 70 94 23 60 88 75 999
输入数据构造的二叉排序树:
输出:
五、总结
以上为笔者对于二叉排序树的一些见解,希望初学者都能有所收获,有技术不到位的地方,还望各位大佬指正。
同时,笔者的个人主页还有数据结构其他部分的一些见解与分析,后续数据结构的相关知识还将陆续更新,欢迎大家访问且共同学习!