- 博客(7)
- 收藏
- 关注
原创 基本知识点整理
如随机变量为抛硬币的结果,产生的结果的概率分布为:p(正面)=0.5 p(背面)=0.5。相对熵(互熵):用来表示两个概率分布的差异,当q(x)和p(x)相同时,则它们的相对熵为零,当q(x)和p(x)的差别增大时,则它们的相对熵也会增大.1、PSNR:峰值信噪比,表示信号的最大可能功率与影响其表示的保真度的破坏噪声的功率之间的比率,是衡量图像质量的指标。是控制难易分类样本的平衡,即对于正样本而言,预测分数越接近于1的表示这个样本越简单,那么这个样本应该对损失的影响越小。
2024-09-26 22:02:10 121
原创 表型基本知识点
4、GROWSCREEN:量化在改变的光照条件下幼苗生长适应的动态(总叶面积、相对生长率和根面积,该系统允许同时对拟南芥和烟草的叶片生长和叶绿素荧光进行表型分析,处理量约为每小时60株。1、高通量表型(HTP):高效、可靠的表型分析方法,用于评估大量基因型,用于图像的数据采集。3、PHEOPSIS-DB:存储数百GB的图像和元数据,用于提供数据和图像分析模块。5、QTL分析:用于定位控制数量性状的基因在基因组中位置的方法。2、PHEOPSIS:自动红绿蓝成像和称重。
2024-09-08 09:24:24 99
原创 神经网络随笔
相似度=过滤器S的灰色格子和扫描图像块的灰色格子吻合地方的个数。学习数据的正解=所用的数据正确、真实的标注或结果。b.考察图像根据过滤器S,得到一下结果。b=偏置 值大则神经元不易兴奋。S=过滤器=核(kernal)output:2个神经单元。d.通过池化进行信息的压缩。1.隐藏层:负责特征提取。input:5个神经单元。a.图像2为考察的图像。隐藏层:4个神经单元。c=常数 x=变量。2、卷积神经网络流程。
2024-09-04 22:08:11 232
原创 第一次写博客
偶然看到一篇别人的博客,突然意识到写博客的重要性,于是于2024.7月写第一篇博客并改掉自己单纯截知识点不总结的坏习惯。如有不好的地方,欢迎大佬们指正。
2024-07-11 15:46:54 420
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人