Optimizing RIS Impairments through Semantic Communication
通过语义通信优化RIS损伤
· 作者: Nour Hello, Mattia Merluzzi, Emilio Calvanese Strinati, Luca Sanguinetti
· 所属机构: CEA-Leti, Université Grenoble Alpes, F-38000 Grenoble, France; Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
· 关键词: 智能超表面,语义通信,分离优化
· 时间:2024年10月
· 评论:本文已被 IEEE Globecom Workshop on Generative Horizons: Exploring Goals through Semantic Communication 接受发表
研究背景:
1. 6G技术发展: 从5G到6G的转变将深刻改变网络和人类在物理和网络空间的互动方式,创造智能和可编程的物理和数字环境,提供无处不在的无线智能服务。
2. 智能超表面(RIS): RIS是一种新的概念,通过由几乎被动的可重构元素组成的表面,可以控制无线电波传播,实现无线传播环境的期望动态变换。
3. 语义通信(SemCom): 6G网络的一个基本支柱是将人工智能(AI)技术直接嵌入无线通信系统的设计和运营中,称为AI原生系统。SemCom通过强调传输有意义的信息来提高通信对物理层损伤的鲁棒性。
研究方法:
1. 系统模型: 本文提出了一个基于知识图谱表示学习的语义通信系统,该系统包括语义和无线两个组成部分,通过RIS辅助通信系统优化无线环境。
2. 优化RIS损伤: 通过SemCom,研究了RIS区域大小和其活动元素的相位偏移精度对系统性能的影响。
3. 数学表达: 语义系统总体转换Te2e,sc可以表示为一系列在语义通道、无线通道和其他模块上操作的转换的组合,如公式(1)所示。
实验设计:
1. 系统参数: 本文考虑了一个场景,其中发射器、接收器和RIS放置在3D坐标[0,10,0],[10,15,0]和[10,0,0]。发射器配备10×10均匀平面阵列(UPA),发射功率设置为0.1W,载波频率为28GHz。
2. RIS辅助通信: RIS通过在预期方向上反射信号,提供波束成形增益以减轻乘性路径损耗。RIS辅助通信涉及发射器和RIS之间的MIMO信道Hr,x和RIS与接收器之间的MIMO信道Hx,r。
结果分析:
1. 数值结果: 本文通过数值结果评估了基于知识图谱表示学习的语义模型在RIS通信场景中相对于传统编码方法(霍夫曼编码和6位编码)的增益,假设发射器和接收器之间没有直接的视线路径。
2. 性能评估: 通过在不同信噪比(SNR)值下测试训练有素的语义模型的性能,评估了RIS活动元素比例和相位偏移精度对系统性能的影响。
3. 知识图谱匹配: 本文还评估了语义方法在RIS无线设置中相对于传统编码方法在知识图谱数据结构上的增益,这验证了语义方法在优化RIS增益方面的适用性。
总体结论:
1. 语义通信与RIS技术的结合: 通过语义通信与RIS技术的结合,可以克服固有的实施挑战,并在下一代无线网络中优化性能。
2. 可扩展性: 该方法通过使RIS设置支持更多用户而无需额外的硬件资源,展示了其可扩展性。