语义通信论文略读(十八)轻量级的语义通信系统

工程化基于深度联合源信道编码的轻量级语义通信系统

· 作者: Weihan Zhang, Shaohua Wu, Siqi Meng, Jinghang He, Qinyu Zhang
· 所属机构: 哈尔滨工业大学(深圳)电子与信息工程学院;广东航天航空大学航天通信与网络技术重点实验室
· 关键词: 深度联合源信道编码,边缘设备,物联网,Rician衰落信道,轻量级模型量化

研究背景:

1. 物联网边缘设备的挑战: 随着物联网(IoT)的发展,边缘设备的部署需求日益增长。深度联合源信道编码(DeepJSCC)在语义通信中崭露头角,但面临信道衰落等挑战。
2. 边缘设备的计算资源限制: 在边缘设备上实现DeepJSCC面临计算资源受限的问题。
3. 与数字系统的兼容性问题: DeepJSCC与现代数字通信系统的兼容性问题,如量化输出导致系统质量显著下降。

研究方法:

1. DeepJSCC-ES方法: 提出基于集成学习的DeepJSCC结构,增强DeepJSCC在Rician信道中的鲁棒性。
2. DJSAP剪枝算法: 提出一种新的SNR自适应剪枝方法,简化重要性函数以减轻计算负担,并设置剪枝比例以减少SNR变化引起的质量下降。
3. SFPQSQ方法: 提出基于软量化函数的模拟固定点量化训练方法,以解决DeepJSCC与数字系统的兼容性问题。

实验设计:

1. 系统模型: 介绍了DeepJSCC系统和信道的数学模型,以及编码器和解码器的结构和损失函数。
2. 性能指标: 选择峰值信噪比(PSNR)和结构相似性(SSIM)作为重建图像质量的衡量标准。
3. 实验设备: 选择小型无人机作为实验平台,使用NVIDIA Jetson Xavier作为无人机计算机,地面站使用笔记本电脑,采用Microphase SDRpi作为收发器。

结果分析:

1. DeepJSCC-ES系统: 模拟结果显示,DeepJSCC-ES系统在低信噪比条件下性能优于基线DeepJSCC系统。
2. DJSAP剪枝算法: 剪枝模型的参数大小压缩了93.37%,而平均SSIM仅下降了0.92%。
3. SFPQSQ方法: SFPQSQ在处理DeepJSCC与数字系统兼容性问题方面优于普通量化方法。
4. 实验结果: 在无人机上部署DeepJSCC系统,实验结果表明,传输图像的平均PSNR为25.14dB,平均SSIM为0.716,满足边缘设备上某些应用的图像传输标准。

总体结论:

本文致力于在边缘设备上工程化轻量级DeepJSCC系统。通过提出DeepJSCC-ES方法、DJSAP剪枝算法和SFPQSQ量化方法,成功提升了DeepJSCC在复杂信道环境下的鲁棒性,实现了轻量级部署,并解决了与数字系统的兼容性问题。实验结果表明,所提出的系统可以作为边缘设备实际部署的可行解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值