树是一个根和若干棵不相交子树的集合
森林是若干不相交树的集合
树去掉根结点就变成了森林,森林加上根就变成树
###树的存储结构###
先前介绍了二叉树的存储结构,现在介绍一下一般树的存储结构
双亲表示法
实现:定义结构数组,用于存放结点,每个结点存放两个域
-
数据域:存放结点本身信息
-
双亲域:指示本结点的双亲结点在数组中的位置
注意到根结点的双亲位置标记为-1
很显然这种结构是找双亲容易找孩子难
//双亲表示法结点结构体类型
typedef struct PTNode {
TElemType data;
int parent;//双亲位置域
} PTNode;
//树结构
#define MAX_TREE_SIZE 100
typedef struct {
PTNode nodes[MAX_TREE_SIZE];
int r, n;//根结点的位置和结点个数,根结点可能不是序列的第一个(不是先序输入)
} PTree;
孩子链表
孩子链表的特定是数组和链表结合
显然这种方法找孩子容易,找双亲难;但是如果在双亲结构体中再增加一个双亲域用于存放该结点的双亲位置,这样就构成带双亲的孩子链表,可以比较容易查找双亲和孩子
//孩子结点结构类型
typedef struct CTNode {
int child;
struct CTNode *next;
} *ChildPtr;//孩子链表结点指针
//双亲结点结构体类型
typedef struct {
TElemType data;
ChildPtr firstchild;//孩子链表头指针
} CTBox;//孩子链表
//树结构
typedef struct {
CTBox nodes[MAX_TREE_SIZE];
int n, r; //结点数和根结点的位置
} CTree;
孩子兄弟表示法(二叉树表示法,二叉链表表示法)【较为常用】
用二叉链表作为树地存储结构,链表中 每个结点的两个指针域分别指向第一个孩子和下一个兄弟结点
//孩子兄弟表示法的树结点结构体类型
typedef struct CSNode {
ElemType data;
struct CSNode *firstchild, *nextsibling;
} CSNode, *CSTree;
二叉树是一种较为简洁的数据结构,我们不妨将树转化成二叉树,利用二叉链表作为媒介来导出树和二叉树的一个对应关系
因此关键就在于如何实现树和二叉树的互化
将树转换成二叉树
-
加线:在兄弟之间加一连线
-
抹线:对每个结点,除了其左孩子,去除其与其余孩子之间的关系
兄弟相连留长子
将二叉树转换成树
-
加线:若p结点是双亲结点的左孩子,则将p的右孩子,右孩子的右孩子...沿着分支找到所有右孩子,都与p的双亲用线连起来
-
抹线:抹掉原来二叉树中双亲与右孩子之间的连线
-
调整:将结点按层次排序,形成树结构
左孩右右连双亲,去掉原来右孩线
###森林和二叉树的转换(二叉树和多棵树的关系)###
森林变二叉树
-
将各棵树分别转换成二叉树
-
将每棵树的根结点用线相连
-
以第一棵树根结点作为二叉树的根,再以根结点为轴心,顺时针旋转,构成二叉树型结构
森变二叉根相连
二叉树变森林
-
抹线:将二叉树中根结点与其右孩子连线,及沿右分支搜索到的所有右孩子之间的连线全部抹掉,使之变成鼓孤立二叉树
-
还原:将孤立的二叉树还原成树
去掉全部右孩线,孤立二叉再还原
###(一般)树和森林的遍历###
树的遍历(三种方式):先根遍历,后根遍历,层次遍历
没有中根,因为可能存在多个孩子结点
森林遍历,把森林看成三部分
先序遍历:
森林非空,则:
-
访问森林第一棵树的根结点
-
前序遍历森林中第一棵树的子树森林
-
先序遍历森林中(除第一棵树之外)其余树构成的森林
中序遍历:
森林非空,则:
-
中序遍历森林中第一棵树的子树森林
-
访问森林中第一棵树的根结点
-
中序遍历森林中(除第一棵树之外)其余树构成的森林
后序遍历:
森林非空,则:
-
中序遍历森林中第一棵树的子树森林
-
中序遍历森林中(除第一棵树之外)其余树构成的森林
-
访问森林中第一棵树的根结点
森林的先序中序后序和二叉树差不多,都是递归的去遍历这里不赘述,容易由二叉树章节举一反三而来