算法训练营 day24 回溯算法 回溯算法理论基础 组合

算法训练营 day24 回溯算法 回溯算法理论基础 组合

回溯算法理论基础

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

在这里插入图片描述

回溯三部曲

  • 回溯函数模板返回值以及参数

  • 回溯函数终止条件

  • 回溯搜索的遍历过程

回溯算法模板框架如下:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

组合

77. 组合 - 力扣(LeetCode)

给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

static List<List<Integer>> result = new ArrayList<List<Integer>>();
static List<Integer> path = new ArrayList<Integer>();

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

在这里插入图片描述

所以需要startIndex来记录下一层递归,搜索的起始位置。

那么整体代码如下:

 List<List<Integer>> result = new ArrayList<List<Integer>>();
 List<Integer> path = new ArrayList<Integer>();
 void backtracking(int n, int k, int startIndex)
  • 回溯函数终止条件

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

if (path.size()==k){
    result.add(path);
    return;
}
  • 单层搜索的过程

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
    path.add(i); // 处理节点 
    backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
    path.remove(path.size()-1); // 回溯,撤销处理的节点
}

java整体代码如下:

class Solution {
    List<List<Integer>> result = new ArrayList<List<Integer>>();
    List<Integer> path = new ArrayList<Integer>();
    public List<List<Integer>> combine(int n, int k) {
        backtracking(n,k,1);
        return result;
    }
    void backtracking(int n, int k, int startIndex){
        if (path.size()==k){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex; i <= n; i++){
            path.add(i);
            backtracking(n,k,i+1);
            path.remove(path.size()-1);
        }
    }

优化剪枝

在这里插入图片描述

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();
  2. 还需要的元素个数为: k - path.size();
  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

优化后代码:

class Solution {
    List<List<Integer>> result = new ArrayList<List<Integer>>();
    List<Integer> path = new ArrayList<Integer>();
    public List<List<Integer>> combine(int n, int k) {
        backtracking(n,k,1);
        return result;
    }
    void backtracking(int n, int k, int startIndex){
        if (path.size()==k){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex; i <= n-(k-path.size())+1; i++){
            path.add(i);
            backtracking(n,k,i+1);
            path.remove(path.size()-1);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还是选择了面包

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值