算法训练营 day35 贪心算法 理论基础 分布饼干 摆动序列 最大子序和

文章介绍了贪心算法的基本思想,通过LeetCode的两个问题——455.分发饼干和376.摆动序列——来阐述如何运用贪心策略找到局部最优解以达到全局最优。在饼干分发问题中,通过排序和从大到小分配饼干来最大化满足的孩子数量;在摆动序列问题中,通过识别和保留序列中的波动来找到最长的摆动子序列。同时,文章提到了最大子序和问题,说明如何在连续和为负时重新开始累积以找到最大和。
摘要由CSDN通过智能技术生成

算法训练营 day35 贪心算法 理论基础 分布饼干 摆动序列 最大子序和

理论基础

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

贪心算法并没有固定的套路

贪心没有套路,说白了就是常识性推导加上举反例

分布饼干

455. 分发饼干 - 力扣(LeetCode)

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int result = 0;
        int index = s.length-1;
        for (int i =g.length-1;i>=0;i--){
            if (index>=0&&s[index]>=g[i]){
                result++;
                index--;
            }
        }
        return result;
    }
}

摆动序列

376. 摆动序列 - 力扣(LeetCode)

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点

在计算是否有峰值的时候,大家知道遍历的下标i ,计算prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡
情况一:上下坡中有平坡

例如 [1,2,2,2,1]这样的数组,如图:

在这里插入图片描述

它的摇摆序列长度是多少呢? 其实是长度是3,也就是我们在删除的时候 要不删除左面的三个2,要不就删除右边的三个2。

如图,可以统一规则,删除左边的三个2:

在这里插入图片描述

情况二:数组首尾两端

题目中说了,如果只有两个不同的元素,那摆动序列也是2。

例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。

那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即preDiff = 0,如图:

在这里插入图片描述

情况三:单调坡度有平坡

如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:

在这里插入图片描述

图中,我们可以看出,版本一的代码在三个地方记录峰值,但其实结果因为是2,因为 单调中的平坡 不能算峰值(即摆动)。

我们只需要在 这个坡度 摆动变化的时候,更新prediff就行,这样prediff在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

    public  int wiggleMaxLength(int[] nums) {
        if (nums.length<=1) return nums.length;
        int result = 1;// 记录峰值个数,序列默认序列最右边有一个峰值
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        for (int i = 0; i < nums.length-1; i++) {
            curDiff = nums[i+1]-nums[i];
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)){
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
            }
        }
        return result;
    }

最大子序和

53. 最大子数组和 - 力扣(LeetCode)

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优

从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。

如动画所示:

在这里插入图片描述

class Solution {
    public int maxSubArray(int[] nums) {
        int result = nums[0];
        int sum = nums[0];
        for (int i = 1; i < nums.length; i++) {
            if (sum < 0) {
                sum = nums[i];
            } else {
                sum += nums[i];
            }
            result = Math.max(sum, result);
        }
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还是选择了面包

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值