描述
在数学上,斐波那契数列以如下被以递推的方法定义:F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)F(0)=0,F(1)=1,F(n)=F(n−1)+F(n−2) ((n ≥ 2, n ∈ Nn≥2,n∈N*))输出斐波那契数列1,1,2,3,51,1,2,3,5……中的第nn个数。
输入
多组输入,每组一行数据,包含一个数n(0≤n≤92),n=0时结束。
输出
对每个nn输出斐波那契数列中的第nn个数,每组输出占一行。
输入样例 1
2
3
5
0
输出样例 1
1
2
5
提示
intint型的数据范围是-2147483648−2147483648~21474836472147483647
longlong longlong型的数据范围是-9223372036854775808−9223372036854775808
思路:
给了提示那么说明大概率要用上,那么这个大数结合题意来看就是我们的数列的第n项了,所以用long long存东西~
TLE:如果用每一次输入一个数都要重新算一遍的那种最简单递归思路的话就是超时了,所以我们要在这个算法的基础上进行改进——如果每次能把已经计算过的数传到一个数组里保存着,下次再用的时候就可以直接调用它了,那就会方便省时多了!
所以建立全局数组num,在Func函数里分情况:n==1或n==2,存储,返回1;若num[n-1]与num[n-2]都存在,那么我们所求的Func(n)就直接让数组这俩数相加即可,不用再递归求;若两个数里有一个没存过数据,就用递归重新计算。
这样就可以过啦~
代码如下:
#include<string>
#include<iostream>
#include<map>
#include<vector>
#include<cmath>
#include<set>
#include<algorithm>
using namespace std;
long long num[100];
long long Func(int n)
{
if (n == 1 || n == 2)
{
num[n] = 1;
return 1;
}
else if(num[n-1]&&num[n-2])
return(num[n-1]+num[n-2]);
else
{
num[n - 1] = Func(n - 1);
num[n - 2] = Func(n - 2);
return(Func(n - 1) + Func(n - 2));
}
}
int main()
{
int n;
cin >> n;
while (n != 0)
{
cout << Func(n) << endl;
cin >> n;
}
return 0;
}