- 博客(5)
- 收藏
- 关注
原创 基于 LDA 与 RBT3 的违规信息分析与识别
本案例通过对某短视频平台的大量文本数据进行采集、清洗、分析与挖掘,并通过基于深度学习的文本分类模型对文本进行分类训练,得到的模型能够检测色情、暴力、恐怖、政治敏感等内容,并能在短时间内处理大量的违规内容,从而维护社会公共道德和互联网生态。通过给定的违规数据与非违规数据合并后得到的整体数据作为数据集,训练了一种基于深度学习的文本违规识别模型,该模型通过深度学习的方法进行训练,能够最大效率对给定数据进行快速违规识别。根据困惑度分析得到的主题数为8,构建LDA主题模型对违规数据进行分析,实现代码见代码8。
2024-03-19 17:42:58 693
原创 Pycharm中Opencv函数(cv2)无智能提示解决方法
由于高版本opencv与pycharm的不兼容,存在的无法智能提示、自动补全问题,目前仅找到降低版本这唯一的解决方法!
2022-10-21 10:40:11 6124 6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人