我是本科建筑学,研究生电子信息的野路子人。CS231这门课是计算机视觉非常经典的课程,也是老师推荐。写这个系列的初衷:一是为了整理出一个知识框架,让我学到的知识属于一个完整体系,方便以后复习和复盘;二是因为是自学,需要记录自己每天学习的进度,更有脚踏实地的感觉;三是我超爱分享和讨论,如果能因为这些文字链接到更多志同道合的伙伴就再好不过了。
常用网站:
Assignments Page(平时作业):
Stanford University CS231n: Deep Learning for Computer Vision
Python Numpy Tutorial (with Jupyter and Colab)(Numpy基础):
Python Numpy Tutorial (with Jupyter and Colab)
关于课程体系的逻辑:
其实这门课的讲述逻辑更像是 survey(综述),是按照某个研究方向的技术路线来讲述的,有清晰的先后顺序和发展脉络。一项任务 -> 提出方法A -> 方法A有问题 -> 根据方法A的局限提出方法B -> 根据方法B的局限提出方法C...... 和国内的教学逻辑有些不一样,这是需要注意的。
关于本专栏和原课程的内容比较:
现在流传出来的公开课版本比较古早,PPT是2017年的。可以想象当我尝试跑上面的代码时发现了 python 2 的语法和一些已经不存在的函数是什么心情。这个专栏的课程是完整的斯坦福CS231课程,甚至包含了前置基础 Python Numpy Tutorial 的部分。但里面的内容我根据自己的科研经验有补充,代码也有所更新(我用的是 Python 3.9),以及我做了一些讲解顺序上的调整(更符合国内教学的逻辑框架)。祝各位聪明的大脑一看就懂,一学就会!