自己实现Pow(x,n)

在这里插入图片描述
我们每次都让x乘自己 也就是x的平方,然后索引循环次数/2。但是如果碰到i是奇数,那么就还让再让他乘一下自己,在平方,需要把这个值乘到res里面做弥补,同时最后一次i/2必然为1即奇数,所以最终得到的x和损失量相乘得到最终结果。

 public double myPow(double x, int n) {
        double res = 1;
        for(int i = n;i != 0;i = i/2){
            if(i%2!=0){
                res = res * x;
            }
            x *= x;
        }
        return n<0?1/res:res;
    }

for循环的次数即i作减半直到为1的次数,而x *= x;相当于对幂作加倍,加倍的次数正好等于减半的次数。但是由于i/2在i为奇数时会造成损失,损失量刚好是上一次的x值,需要把这个值乘到res里面做弥补,同时最后一次i/2必然为1即奇数,所以最终得到的x和损失量相乘得到最终结果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
A year and a half year ago, I published this article to the Codeguru site and got a number of requests about the Kriging algorithm contour map. Unfortunately, my project was changed shortly after that article and later I quit the company so I couldn‘t find time to finish this Contour business. A week ago, I happened to need a contour map again so I decided to solve the Kriging algorithm. I searched the Internet for a commercial library but they all look ugly and hard to use. So, I made up my mind to make my own algorithm. The Kriging algorithm is easy to find, but this algorithm needs a Matrix and solver (LU-Decomposition). Again, I couldn‘t find suitable code for this. I tried to use GSL first but this made my code too big and was slower. Finally, I went back to "Numerical Recipe in C"—yes, that horrible-looking C code—and changed the code there to my taste.If you read this article before, the rendering part hasn‘t been changed much. I added the Kriging algorithm and revised the codes a little bit. Following is the Kriging Algorithm:templatedouble GetDistance(const ForwardIterator start, int i, int j){ return ::sqrt(::pow(((*(start+i)).x - (*(start+j)).x), 2) + ::pow(((*(start+i)).y - (*(start+j)).y), 2));}templatedouble GetDistance(double xpos, double ypos, const ForwardIterator start, int i){ return ::sqrt(::pow(((*(start+i)).x - xpos), 2) + ::pow(((*(start+i)).y - ypos), 2));}templateclass TKriging : public TInterpolater{public: TKriging(const ForwardIterator first, const ForwardIterator last, double dSemivariance) : m_dSemivariance(dSemivariance) { m_nSize = 0; ForwardIterator start = first; while(start != last) { ++m_nSize; ++start; } m_matA.SetDimension(m_nSize, m_nSize); for(int j=0; j<m_nSize; j++) { for(int i=0; i<m_nSize; i++) { if(i == m_nSize-1 || j == m_nSize-1) { m_matA(i, j) = 1; if(i == m_nSize-1 && j == m_nSize-1) m_matA(i, j) = 0; continue; } m

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李昕羽

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值