pycharm运行内存不足,或者pycharm用着特别卡,均可以用此方法

只需要将pycharm运行内存扩展一下即可:

点击帮助->更改内存设置->修改堆大小上限(依据实际需求更改),完成

如果此文章对您有所帮助,那就请点个赞吧,收藏+关注 那就更棒啦,十分感谢!!!

### 增加 PyCharm 堆内存配置 为了有效解决 `OutOfMemoryError` 错误,在 PyCharm 中可以通过编辑 `pycharm64.exe.vmoptions` 文件来增加堆内存配置。此文件位于 PyCharm 安装目录下。 #### 编辑 vmoptions 文件 默认情况下,`pycharm64.exe.vmoptions` 的初始设置如下: ```plaintext -Xms128m -Xmx1024m -XX:ReservedCodeCacheSize=240m -XX:+UseConcMarkSweepGC -XX:SoftRefLRUPolicyMSPerMB=50 -ea -Dsun.io.useCanonCaches=false -Djava.net.preferIPv4Stack=true -XX:+HeapDumpOnOutOfMemoryError -XX:-OmitStackTraceInFastThrow ``` 通过提高 `-Xmx` 参数的值可以增大最大堆大小。例如,将 `-Xmx1024m` 修改为 `-Xmx2048m` 或更高数值[^1]。 #### 步骤说明 当遇到 `out of memory` 错误时,建议逐步提升堆内存的最大分配量。如果最初设定为 1024 MB,则可考虑将其调整到更高的水平,比如 2 GB (即 `-Xmx2048m`) 或者更大,具体取决于计算机可用 RAM 和实际需求[^2]。 需要注意的是,虽然增加 JVM 启动参数中的堆空间能够缓解某些场景下的 OOM 问题,但如果应用程序本身存在资源泄漏或其他性能瓶颈,单纯依赖于加大内存并非长久之计。因此还需要关注项目本身的优化工作。 另外,对于那些即使增加了内存也无法解决问题的情况,可能是由于其他原因引起的,如插件冲突或是不兼容的操作系统环境等因素造成的闪退现象[^3]。此时应该排查是否有不必要的大型插件加载,并确保操作系统与软件版本之间的匹配度良好。 最后提醒一点,盲目地无限上调内存限额并不是一个好的实践方式;合理评估应用的实际消耗情况并据此做出适当调整才是更为科学的做法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值