P2630 图像变换 恶心的模拟题

题目描述

给定 33 行 33 列的图像各像素点灰度值,给定最终图像,求最短、字典序最小的操作序列。

其中,可能的操作及对应字符有如下四种:

A:顺时针旋转 9090 度;

B:逆时针旋转 9090 度;

C:左右翻转;

D:上下翻转。

输入格式

一个矩阵,表示初始的图像。

一个矩阵,表示最终的图像。

输出格式

最短、字典序最小的操作序列,保证长度不超过 10^8108,不保证有解。

若长度不超过 10^8108 无解则输出 Poland cannot into space!!! 。

输入输出样例

输入 #1复制

3 4 5
6 7 8
1 2 3
1 2 3
6 7 8
3 4 5

输出 #1复制

D

说明/提示

字符串长度不超过 10^8108。

要考虑顺逆时针后的左右变化

#include<bits/stdc++.h>
#define rep(a,b,c ) for(int a = b;a<=c;a++)
#define per(a,b,c) for(int a=b;a>=c;a--)
const int N = 10;
int a[N][N];
int b[N][N]; 
using namespace std;
int main(){
	int flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		cin>>a[i][j]; 
	}
	rep(i,1,3)
	{
		rep(j,1,3)
		cin>>b[i][j];
	}
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j] != b[j][4-i])
			{
				flag = 1;
				break;
			}
		}
	}if(!flag)
	{
		cout<<'A'<<endl;
		return 0;
	}
	else flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j]!=b[4-i][4-j])
			{
				flag = 1;
				break;
			}
		}
	}
	if(!flag)
	{
		cout<<"AA"<<endl;
		return 0;
	}
	else flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j]!=b[4-j][i])
			{
				flag = 1;
				break;
			}
		}
	 } 
	 if(!flag)
	{
		cout<<'B'<<endl;
		return 0;
	}
	else flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j]!=b[i][4-j])
			{
				flag = 1;
				break;
			}
		}
	}
	if(!flag)
	{
		cout<<'C'<<endl;
		return 0;
	}
	else flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j]!=b[4-i][j])
			{
				flag = 1;
				break;
			}
		}
	}
	if(!flag)
	{
		cout<<'D'<<endl;
		return 0;
	}
	else flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j]!=b[i][j])
			{
				flag = 1;
				break;
			}
		}
	}
	if(!flag)
	{
		cout<<"AB"<<endl;
		return 0;
	}
	else flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j]!=b[4-j][4-i])
			{
				flag = 1;
				break;
			}
		}
	}
	if(!flag)
	{
		cout<<"AD"<<endl;
		return 0;
	}
	else flag = 0;
	rep(i,1,3)
	{
		rep(j,1,3)
		{
			if(a[i][j]!=b[j][i])
			{
				flag = 1;
				break;
			}
		}
	}
	if(!flag)
	{
		cout<<"AC"<<endl;
		return 0;
	}
	else flag = 0;
	if(!flag)
	cout<<"Poland cannot into space!!!"<<endl;
		
	return 0;
}

<think>好的,我现在需要帮用户整理关于图像处理的标准面试问题和常见知识点总结。首先,用户的需求很明确,但可能还需要更具体的内容,比如基础理论、常见算法、编程实现等。我要先回想一下常见的图像处理面试题,确保覆盖主要方面。 首先,图像处理的基础概念是必须的,比如颜色空间转换,用户可能会被问到RGB和HSV的区别及应用场景。然后是图像增强方法,比如直方图均衡化,这涉及到算法原理和实现步骤。此外,边缘检测也是经典问题,Sobel、Canny算子的优缺点和应用场景需要详细说明。 接下来是图像分割,用户可能会问阈值分割和区域生长法的区别,还有分水岭算法的原理。形态学操作如腐蚀、膨胀、开闭运算也是常见考点,需要解释它们的数学基础和实际应用。 特征提取方面,SIFT和HOG的特征描述方法需要比较,Harris角点检测的原理也是重点。此外,图像滤波方法如高斯滤波和中值滤波的区别,以及傅里叶变换图像处理中的应用也是常见问题。 编程实现部分,用户可能需要展示对OpenCV的熟悉程度,比如读取图像、调整尺寸、灰度化、边缘检测等操作的代码示例。同时,优化技巧如图像金字塔和积分图的应用也需要提及。 另外,用户可能还关心实际应用,比如人脸检测中的Haar级联分类器,或者图像去噪方法。需要确保每个问题都有清晰的解答,并引用相关知识点,比如Matlab中的imread函数和EXPLAIN查询分析,但可能这些引用不太相关,需要确认是否正确。 最后,要生成相关问题,帮助用户进一步深入学习,比如深度学习在图像处理中的应用,或者OpenCV的优化技巧。需要检查所有LaTeX格式是否正确,行内公式用$...$,独立公式用$$...$$,并确保回答结构清晰,符合用户的要求。</think>### 图像处理常见面试题及知识点汇总 #### 一、基础理论与算法 1. **图像颜色空间转换** - **问题**:RGB与HSV颜色空间的区别及典型应用场景是什么? - **解答**: - **RGB**:基于红、绿、蓝三通道的加法混色模型,适用于显示设备,但对光照变化敏感[^2]。 - **HSV**:由色调(Hue)、饱和度(Saturation)、明度(Value)构成,更贴近人类视觉感知,常用于颜色分割和图像分析。 - **公式**:RGB到HSV的转换公式为: $$ V = \max(R,G,B), \quad S = \frac{V - \min(R,G,B)}{V} $$ 色调$H$的计算需根据最大通道值分段处理。 2. **图像增强方法** - **问题**:直方图均衡化的原理是什么?如何实现? - **解答**: - **原理**:通过扩展像素值分布范围,增强对比度。 - **步骤**: 1. 计算图像灰度直方图$P(r_k) = \frac{n_k}{N}$($n_k$为灰度级$r_k$的像素数,$N$为总像素数); 2. 计算累积分布函数$CDF(r_k) = \sum_{i=0}^k P(r_i)$; 3. 映射$s_k = CDF(r_k) \times (L-1)$($L$为最大灰度级)。 3. **边缘检测算法** - **问题**:比较Sobel、Canny算子的优缺点及适用场景。 - **解答**: - **Sobel**:基于一阶导数,计算梯度幅值$G = \sqrt{G_x^2 + G_y^2}$,速度快但抗噪性差,适用于实时系统[^3]。 - **Canny**:多阶段算法(高斯滤波→梯度计算→非极大值抑制→双阈值检测),精度高但计算复杂,适合高精度场景。 #### 二、编程与实现 ```python # 示例:使用OpenCV实现边缘检测 import cv2 # 读取图像并灰度化 image = cv2.imread('input.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Sobel边缘检测 sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) sobel_combined = cv2.sqrt(cv2.addWeighted(sobel_x**2, 0.5, sobel_y**2, 0.5, 0)) # 显示结果 cv2.imshow('Sobel Edge Detection', sobel_combined) cv2.waitKey(0) ``` #### 三、进阶问题 4. **图像分割方法** - **问题**:分水岭算法的原理是什么?如何避免过分割? - **解答**: - **原理**:将图像视为地形表面,灰度值高的区域为“山峰”,低处为“盆地”,通过模拟注水过程分割区域。 - **改进**:结合标记控制(Marker-controlled)先验信息,限制注水起点[^1]。 5. **形态学操作** - **问题**:腐蚀(Erosion)与膨胀(Dilation)的数学定义及作用? - **解答**: - **腐蚀**:$A \ominus B = \{z | B_z \subseteq A\}$,用于消除小物体或细化结构。 - **膨胀**:$A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\}$,用于填充孔洞或连接断点。 #### 四、实际应用 6. **特征提取** - **问题**:SIFT和HOG的特征描述方式有何异同? - **解答**: - **SIFT**:基于尺度空间的关键点检测,生成128维方向直方图,对旋转、缩放鲁棒。 - **HOG**:在固定窗口内计算梯度方向统计,适用于行人检测等刚性物体识别。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值