蓝桥杯——ALGO-12—— 算法训练 幂方分解

该博客介绍了一种将任意正整数表示为2的幂次方组合的方法。通过递归算法,程序能够将输入的整数分解为不重复的2的次幂形式,输出结果中每个2的幂次方用括号括起并连接。博客内容涉及到计算机科学中的算法设计和数值表示,适合对算法和数学感兴趣的人群阅读。

资源限制:

内存限制:256.0MB   C/C++时间限制:1.0s   Java时间限制:3.0s   Python时间限制:5.0s

问题描述:

  任何一个正整数都可以用2的幂次方表示。例如:
  137=27+23+20
  同时约定方次用括号来表示,即ab 可表示为a(b)。
  由此可知,137可表示为:
  2(7)+2(3)+2(0)
  进一步:7= 22+2+20 (21用2表示)
  3=2+20
  所以最后137可表示为:
  2(2(2)+2+2(0))+2(2+2(0))+2(0)
  又如:
  1315=210 +28 +25 +2+1
  所以1315最后可表示为:
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)

输入格式:

  输入包含一个正整数N(N<=20000),为要求分解的整数。

输出格式:

  程序输出包含一行字符串,为符合约定的n的0,2表示(在表示中不能有空格)

思路:

将可能的2的次方列出来,可以知道最大到2的14次方,将这些数存放到数组中,

n=1和n=2时是特殊情况,单独进行判断,其余情况用while循环遍历。

代码如下:

import java.util.*;
 
public class Main
{
    //数组存放2的几次方
    public static int [] arr=new int[] {1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384};
	public static void mf(int n) {
        //n=1时输出2(0)
		if (n==1) {
			System.out.print("2(0)");
			return;
		}
        //n=2时输出2
		if (n==2) {
			System.out.print("2");
			return;
		}
		int i=14;int j=n;
       //不超过n的最大次幂
		while (i>=1) {
			if (j-arr[i]>=1) {
				System.out.print(2);
				if (i>1) {
					System.out.print("(");
					mf(i);
					System.out.print(")");
				}
				j=j-arr[i];
				if(j!=0)System.out.print("+");
				mf(j);
				return;
			}
			i--;
		}
		
	}
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		int n=sc.nextInt();
		mf(n);
	}

}

运行结果如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值