算法学习(一)------递归算法问题的详解

递归算法简单来说就是自己调用自己,它可以解决很多问题。例如汉诺塔,斐波那契数列,八皇后问题等等,在这里介绍一下递归的思想,通过几个例子由简到难地来了解它

目录

一.斐波那契数列

1.详细分析

2.代码

 二.兔子问题

三.八皇后问题

1.详细分析

2. 代码:


一.斐波那契数列

1.详细分析

观察一下著名的数列——斐波那契数列:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377........

通过观察我们可以发现该数列除了前两个数,后面的数都是由前面两个数相加而来

例如:2=1+1,3+2+1,5=2+3,8=5+3......

我们可以用一个公式来表示斐波那契数列:

F(n)=\left\{\begin{matrix} 0 ,n=0 & \\1 ,n=1 & \\F(n-1)+F(n-2),n>1 \end{matrix}\right.

 可以发现当n>1时要重新调用F(n)函数,用到了递归的思想

2.代码

#include<iostream>
 
using namespace std;
 
int Feibo(int n)
{
	if(n==1) return 0;  //n从1开始是为了后面递归Feibo(n-2)的时候不是负数 
	else if(n==2) return 1;
	else return Feibo(n-1)+Feibo(n-2);
}
 
int main()
{
	int res=0,n;     
	while(cin>>n&&n!=0)
	{
		res=Feibo(n);  //调用函数 
		cout<<"第"<<n<<"个数为:"<<res<<endl;
	}
	return 0; 
 } 

运算结果如图: 

 二.兔子问题

一只兔子每年初生一只小兔,小兔到第四年时也开始生兔子,当第n年的时候,会有多少只兔子?

第n年123456789
f [n]只123469131928

第一年的时候有一只兔子,还没有开始生,第二年开始,每年生一只,从第五年开始,小兔也开始生兔子,以此类推,可以很明显的找到规律f [n] = f [n-1] + f [ n-3 ] ;

代码和斐波那契数列类似,就不再写了。

三.八皇后问题

在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。(如下图的形式)

1.详细分析

八皇后问题具有一定难度,但这类问题其实就是让任意两个皇后都不可以放在同一行,同一列,同意对角线上,是一个递归回溯问题。我们针对它的条件可以一步步分析。

首先,连个皇后不能放在同一行,那我们在放的时候可以一行一行放,而不是随意乱放,第一行放完,观察下一行放的位置。我们可以用queen[i]=j来表示皇后放的位置,比如queen[1]=1就可以表示皇后放在(1,1)处。而为了不放在同一行上,那么 i 值就不可以在1--8上出现重复

其次,看不能在同一列的问题,这和不在同一行是一个思想,即 j 在1--8上不能出现重复

最后,解决不能在同一对角线的问题,这个问题也是最复杂的,我们在观察从·左上到右下的对角线上的点时可以发现,这些点坐标的x,y值差值相等。从右上到左下的对角线上的点可以发现,这些点坐标的x,y值相加相等。那么我们在放皇后的时候要注意x-y和x+y

这里引用一下别的博主的图,这里是四皇后寻找可行方案的一次尝试,但是思想和八皇后一样

总结一下,我们在放皇后时主要考虑三个条件,分别是列和两条对角线。我们设 i 为行号,j 为列号,i,j = 1,2,3.....8,那么n = i+j(m=2,3,4......16),k = i-j+9(为了方便数值计算,避免出现负数,加上9可以让m和k的值域一样)。

当满足列,对角线的条件时将此位置处放置皇后,然后检查是否放完8个皇后,放完就让方案数加1,如果方案不可行,那么要将前面摆放的皇后拿起,换一处位置,而要被拿起的皇后所在列和对角线都要恢复可行 

详细见代码

2. 代码:

#include<iostream>

using namespace std;

int num=0;  //记录方案数 
int queen[9];  //记录八个皇后所占有的列号 
bool c[9];   //布尔变量,判断当前列是否可行 
bool l[17];  //判断(i-j)对角线是否可行 
bool r[17];  //判断 (i+j)对角线是否可行 

void check(int i)  //核心函数 
{
	int j;  //表示列号 
	int k;
	for(j=1; j<=8; j++)  //循环每一列,看哪个位置可行 
	{
		if((c[j]==true)&&(r[i+j]==true)&&(l[i-j+9]==true))  //表示第i行第j列可行 
		{
			queen[i]=j;  //该位置可行,那么就占用(i,j) 
			c[j]=false;  //(i,j)放置皇后后,那么它的同一列,同意对角线都不能再放,要全部将其置为false 
			l[i-j+9]=false;
			r[i+j]=false;
			if(i<8)  //判断是否放完8个皇后,如果没有就继续放下一个,回溯 
			{
				check(i+1);
			}else{   //如果放完了,那么就将方案数加1,输出 
				num++;
				//cout<<"方案"<<num<":"<<"\t";
				for(k=1; k<=8; k++)
					cout<<k<<"行"<<queen[k]<<"列"<<"\t" ;
				cout<<endl;
			}
			//这里表示若i试完所有情况后还是没有放完,此方案不成立,那么就要把前面摆放的皇后拿起,换一处位置
			//这是要被拿起的皇后所在列和对角线都要恢复可行 
			c[j]=true;  //修改可行标志,回溯 
			l[i-j+9]=true;
			r[i+j]=true;
		}
	}
}

int main()
{
	int i;
	num=0;
	for(i=1; i<9; i++)  //令所有列可行 
	{
		c[i]=true;
	}
	for(i=1; i<17; i++)  //令所有对角线可行 
	{
		l[i]=r[i]=true;
	}	
	check(1);  //递归放8个皇后,从第一行开始放 
	cout<<num;//输出方案数 
	return 0;
 } 

结果如下:(共92种情况) 

 运用这样的思想,可以将八皇后问题转变为n皇后问题,大家可以拓展一下,这里就不再介绍

下一篇会介绍一下关于汉诺塔的问题...... 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-day day up-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值