自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(238)
  • 收藏
  • 关注

原创 长鑫存储面试题:池化层的反向传播

(1)最大池化层的反向传播:梯度只传递给前向传播中被选为最大值的那些位置,其他位置的梯度为0。(2)平均池化层的梯度反向传播:将梯度平均分配到前向传播中每个池化窗口的所有位置。,即:将梯度平均分配到前向传播中每个池化窗口的所有位置。同理,对平均池化,设池化窗口内的输入值集合。(1)最大池化层的梯度反向传播如何实现?(2)平均池化层的梯度反向传播如何实现?反向传播的梯度计算:根据链式法则,输入。因为 y 由最大值决定,改变。对于池化窗口内的输入值集合。,即输出 y 对输入。

2025-12-12 18:52:03 155

原创 知识图谱简介

知识图谱是将人类知识体系“翻译”成机器可理解、可计算、可推理的网络结构的一次革命性尝试。它不仅是搜索引擎进化的核心,更是未来认知智能时代不可或缺的基础设施,正在深刻地改变我们组织、管理和利用信息的方式。

2025-12-12 18:10:45 609

原创 数据结构:堆

优点缺点获取最大/最小元素极快(O(1))除了堆顶,查找其他元素很慢(O(n)),不支持快速查找插入和删除堆顶元素高效(O(log n))堆中元素没有完全的排序,只有偏序关系可以高效地进行堆排序和构建是实现优先队列的最佳数据结构总而言之,堆是一种在需要快速访问最大或最小元素以及处理动态优先级的场景下无可替代的高效数据结构。

2025-11-21 18:57:59 620

原创 字节算法工程面试题:FlashAttention

FlashAttention 是一项革命性的工作,它通过算法与硬件协同设计的思路,将标准的 Transformer Attention 计算重新实现,使其对 GPU 的内存层次结构友好。它通过分块和重计算技术,避免了O(N²)中间矩阵的 HBM 读写,从而在不改变数学结果的前提下,实现了更快的速度和极低的显存占用,为大语言模型处理长上下文奠定了基础,是当前 LLM 领域不可或缺的关键技术之一。

2025-11-21 18:54:28 754

原创 中石油人工智能开发面试题:数据库

数据库类型数据模型优点缺点典型产品关系型表(行和列)ACID事务,强一致性,SQL标准扩展性差,结构不灵活文档型JSON/BSON文档模式灵活,开发快速事务支持弱,复杂查询差键值型键值对性能极高,简单易用查询能力弱,数据结构简单列族型列族扩展性极强,写入性能高查询模式固定,不支持复杂事务图数据库图(节点和边)关系查询性能极佳,直观不适合非关系场景,学习曲线陡Neo4j。

2025-11-21 17:46:17 854

原创 中兴蓝剑加面面试题:手电筒点亮策略

一个无向图中,若干个顶点构成的集合,如果其中。

2025-11-21 17:03:45 896

原创 Langgraph引入定时记忆:只保留最近24小时的记忆

这个类通过记录每个检查点的时间戳,并在每次访问(获取、列表、保存)时清理过期检查点,来实现 TTL 功能。因此,我们需要修改其存储结构,在保存检查点时记录时间戳,并在获取检查点时检查是否过期。另外,我们还需要考虑在获取检查点时,如果检查点过期,我们应当删除它,并且删除相关的时间戳记录。,先检查检查点是否存在且未过期,如果过期则删除并返回None,否则返回检查点。方法,在返回检查点之前检查时间戳,如果过期则返回None,并删除该检查点。,在生成检查点列表时跳过过期的检查点,并删除过期的检查点。

2025-11-18 14:58:26 561

原创 郑州商品交易所计算机专业笔试题:数据库卡顿问题优化

包括数据库的类型(如MySQL、PostgreSQL、Oracle等)和版本号,服务器的硬件配置(CPU核数、内存大小、磁盘类型(如SSD或HDD)和容量),操作系统版本及内核参数,以及数据库的部署架构(如单机、主从复制、集群模式)。:包括卡顿期间正在执行的业务操作(如报表生成、数据导入导出等),数据库表结构和索引情况(如表大小、索引类型),数据量大小和增长趋势,以及应用程序的数据库访问模式(如频繁的查询或更新操作)。:实施数据归档策略,将历史数据迁移到归档表,减少主表的数据量,从而降低查询和维护负载。

2025-11-10 17:28:30 611

原创 郑州商品交易所计算机专业笔试题:矩阵列优先存储

已知矩阵A[15][10]采用列优先存储,元素A[0][0]的地址为100,每个矩阵元素占2个字节,求矩阵元素A[8][6]的地址。偏移量 = (6 × 15 + 8) × 2 = (90 + 8) × 2 = 98 × 2 = 196。其中,行数为15,列号为6(从0开始),行号为8,元素大小为2字节。地址 = 基地址 + (列号 × 行数 + 行号) × 元素大小。因此,地址 = 100 + 196 = 296。故矩阵元素A[8][6]的地址为296。(2025秋季笔试,51,5分)

2025-11-10 17:00:17 297

原创 郑州商品交易所计算机专业笔试题:使用最小花费爬楼梯

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。每当爬上一个阶梯都要花费对应的体力值,一旦支付了相应的体力值,就可以选择向上爬一个阶梯或者爬两个阶梯。请找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

2025-11-10 16:19:15 144

原创 郑州商品交易所计算机专业笔试题:翻转二叉树

否则,递归处理左子树,调整指针使得左子节点的左指针指向原右子节点,左子节点的右指针指向原根节点,最后将原根节点的左右指针置空。给定一个二叉树,其中所有的右节点要么是具有兄弟节点(拥有相同父节点的左节点)的叶节点,要么为空。:给定的二叉树中,每个右节点要么是叶节点且有一个兄弟左节点,要么为空。对 [4,5,2,#,#,3,1] 感到困惑?上面的二叉树则被序列化为[1,2,3,#,#,4,#,#,5]。:将左子节点的左指针指向原右子节点,右指针指向原根节点。输出:返回二叉树的根[4,5,2,#,#,3,1]

2025-11-10 15:23:37 274

原创 郑州商品交易所计算机专业笔试题:运动学矩阵计算

在右手坐标系中,点P(1,2,3)先绕z轴逆时针旋转90度,然后按平移向量d=(4,5,6)进行平移。变换矩阵T由旋转矩阵和平移矩阵组合而成。已知右手坐标系中,点P(1,2,3),先将点P绕z轴逆时针旋转90度,然后按d=(4,5,6)平移,求变换矩阵T和变换后的点P’坐标。在三维空间中,绕z轴旋转的变换矩阵只影响x和y坐标,z坐标不变。绕z轴逆时针旋转90度的旋转矩阵。因此,变换后的点P'坐标为(2, 6, 9)。(2025秋季笔试,56,5分)

2025-11-10 14:49:14 212

原创 郑州商品交易所计算机专业笔试题:称量假金币的最小次数

从A中取3枚金币(A1、A2、A3),从B中取1枚金币(B1),与从A中取1枚金币(A4)、从B中取1枚金币(B2)和1枚真币(从C中取)称量。例如,第二次称量时,从A组取部分金币和从B组取部分金币,与真币组合称量,根据不平衡情况进一步分组,最终在4次内定位假币。后续称量策略类似于标准40枚金币问题:例如,将40枚分成13枚、13枚、14枚,称量13枚与13枚,根据结果继续缩小范围,最终在4次内找到假币。因为假金币质量不同,但不知道是重还是轻,所以我们需要在称量中同时确定哪枚是假的和它是重还是轻。

2025-11-10 14:33:32 614 1

原创 字节面试题:多模态大模型的模态对齐

简单来说,模态对齐是指让模型理解不同模态(如文本、图像、音频)的数据所指代的其实是同一个概念或语义,并在其内部表示空间中,将这些不同来源但含义相同的信息映射到相近的向量表示。一张“猫坐在毯子上”的图片,和一段文字描述“猫坐在毯子上”,以及一段语音在说“猫坐在毯子上”。尽管它们的原始数据形式(像素、字符、声波)天差地别,但经过对齐的模型应该能在其内部表示中,认识到这三者共享一个非常相似的核心语义。对齐的目标:建立统一的语义空间:将所有模态的数据映射到一个共享的、深层的语义表示空间中。实现跨模态理解。

2025-11-10 14:18:24 443

原创 BM25算法概述

BM25是一个强大而高效的检索算法,它比传统的TF-IDF模型更加精细和健壮。非线性TF处理:避免了高频词的过度主导。智能长度归一化:有效解决了长文档在统计上的优势。坚实的理论基础:源于概率检索模型。因此,BM25被广泛应用于各种搜索引擎和检索系统中,包括Elasticsearch和Lucene等知名开源项目,至今仍是许多实际应用的基准检索算法。q_iq_i。

2025-10-20 13:45:35 1062

原创 理想笔试题:最大化团队较差方面的能力

​:排序员工的时间为O(n log n),预处理后缀数组的时间为O(n),每次检查的时间为O(n log n)。二分查找的次数为O(log M),因此总复杂度为O(n log n log M),在给定的约束下是可行的。​:将M的取值范围设定为2到400,000,000(因为每个员工的能力值最大为10^8,所以总和最大为400,000,000)。对于每个候选值M,检查是否存在一对员工,使得他们的阅读能力之和和推理能力之和都至少为M。分析:选择1,2或1,3号员工时,较差能力值为1.5;,以及一个阅读能力值。

2025-10-14 15:20:09 317

原创 字节面试题:MSE的优化

问题现象推荐解决方案原因​。

2025-10-09 15:48:11 595

原创 字节面试题:大模型LoRA微调矩阵参数初始化

初始化方法描述优点缺点适用场景零初始化(B=0)LoRA原始方法,保证训练起点不变。简单,稳定。存在“启动延迟”,收敛慢。现已不常用,作为理解的基础。Kaiming/He初始化A用Kaiming初始化,B初始为0。理论扎实,收敛快且稳定,广泛适用。通用推荐,默认选择。非零初始化A和B都用高斯分布初始化。解决了启动问题。起点引入噪声,可能不稳定。可以尝试,但需要调参。SVD初始化利用全微调增量的SVD来初始化A和B。收敛极快,性能可能更好。实现复杂,计算成本高。

2025-10-09 15:33:10 1115

原创 大模型笔试选择题:题组2

1.(单选)LoRA(Low-Rank Adaptation)的原理是在权重矩阵。根据LoRA(Low-Rank Adaptation)的原理,在权重矩阵。后,额外可训练参数来自矩阵 A 和 B。后,引入的额外可训练参数是。矩阵 A 的参数数量为。矩阵 B 的参数数量为。

2025-09-30 00:50:03 268

原创 深度学习笔试选择题:题组2

3.(单选)已知输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为?选项B无效,因为A是m×n,C是p×q,n和p不匹配(n < p),所以AC不能直接相乘。然后计算(AB)C(尺寸m×p和p×q),乘法次数为m × p × q。

2025-09-29 01:12:56 822

原创 机器学习笔试选择题:题组2

​:线性规划模型包括目标函数(如最大化或最小化一个线性函数)和线性约束(不等式或等式)。可行解是所有满足所有约束条件的决策变量的点集。​。

2025-09-28 00:15:39 851

原创 影石深度学习面试题:增大感受野的措施

首先,我们明确一下概念。在卷积神经网络中,​​感受野​​ 指的是输入图像上某个区域,这个区域内的像素点会影响网络中某一层特定特征图上的一个单元(神经元)的计算。​​浅层神经元​​:感受野很小,只能看到边缘、颜色、纹理等低级特征。​​深层神经元​​:通过层层组合,感受野变大,可以看到更复杂的模式,如物体的一部分甚至整个物体。方法核心思想优点缺点​​增加深度​​堆叠更多层简单,有效参数量大,计算复杂,可能梯度消失​​增大卷积核​​直接使用大核直接有效参数量急剧增加,不常用​。

2025-09-24 01:03:42 1147

原创 计算机基础笔试选择题:题组2

​:指总体中各个单位(如每个学生)所具有的属性或特征。这里,“一天中用于学习的时间”是每个学生的具体特征,因此属于标志。​:指可以取不同值的量,但在这个上下文中,更侧重于统计调查中的个体特征,因此“标志”更为准确。​:通常指综合反映总体数量特征的概念或数值(如平均学习时间),而不是单个学生的值。1.(单选)调查某校学生的学习、生活情况,学生“一天中用于学习的时间”是什么?调查某校学生的学习、生活情况,学生“一天中用于学习的时间”在统计学中属于​。​:指标志值之间的差异或变化,不是特征本身。

2025-09-24 00:51:04 227

原创 数据结构笔试选择题:题组2

​都可以用邻接表存储,但这不是邻接表的独特优势——邻接表同样适用于这两种图类型,但问题焦点在于“适用”性,即哪种图最能体现邻接表的效率优势。​(边数较多)通常更适合用邻接矩阵存储,因为邻接矩阵可以快速访问任意两个顶点之间是否有边,但空间开销较大。​是一种图的存储结构,它通过链表或数组列表的方式存储每个顶点的邻居顶点。这种结构特别适合存储​。​(即边数相对较少的图),因为邻接表只存储实际存在的边,从而节省内存空间。因此,基于数据结构的基本原理,邻接表最适用于稀疏图。1.(单选)下列适用邻接表存储的是。

2025-09-24 00:31:41 278

原创 计算机视觉笔试选择题:题组2

这是最直接和有效的方法,因为深度图像提供了每个像素的深度值,结合相机内参(如焦距和主点),可以将2D像素坐标转换为3D点云坐标,从而实现点云与图像的自然对齐。根据手眼标定的基本原理和常见实践,计算相机和机械臂的相对位姿通常采用标准方法:使用机械臂移动标定板,通过测量标定板在不同位置时相机的位姿,然后利用这些数据求解相机与机械臂之间的变换关系(即解决AX=XB问题)。ICP算法通常用于3D点云之间的配准,而不是直接用于点云与2D图像的对齐,因为图像是2D的,缺乏3D结构信息,因此这种方法不适合。

2025-09-23 22:29:59 1031

原创 大模型笔试选择题:题组1

GPT和BERT基于Transformer。因此不是所有模型都基于Transformer。ELMo是双向的(使用双向LSTM),BERT是双向的,但GPT是单向的(仅从左到右生成),因此不是所有模型都是双向的。ELMo、GPT和BERT都能生成上下文相关的词嵌入,因此都能解决一词多义问题。ELMo、GPT和BERT都依赖于大规模文本语料进行预训练,这是它们的共同特点。1.(多选)以下选项中属于elmo、gpt、bert相同点的是。D. 都基于Transformer。A. 都可以解决一词多义问题。

2025-09-23 00:01:45 283

原创 机器学习笔试选择题:题组1

K-means需要用户预先指定聚类数k,算法本身无法自动确定k值。初始聚类中心通常随机选择(尽管有改进方法如K-means++,但标准K-means使用随机选择)。i),其中n是样本数,k是聚类数,i是迭代次数。K-means对初始聚类中心的选择非常敏感,不同的初始中心可能导致不同的聚类结果。K-means聚类算法不需要标签数据,用于将数据分成聚类,因此属于无监督学习。D. K值无法白动获取,初始聚类中心随机选择。1.(多选)关于K-means聚类算法说法正确的是。K-means的时间复杂度为O(n。

2025-09-22 23:58:41 306

原创 计算机基础笔试选择题:题组1

根据Python3的数据类型特性,List(列表)是可变数据类型,这意味着当它的值改变时(例如添加、删除或修改元素),变量指向的内存地址不会改变。在实际实现中(如pthread读写锁),当写锁被持有时,其他写线程会被阻塞(进入睡眠状态),而不是循环查询(忙等待)。而选项A. String(字符串)和B. Number(数字)是不可变数据类型,当值改变时,变量会指向一个新对象,地址会发生改变。D. 读写锁在写加锁状态时,其他进行写操作线程不会阻塞,一直循环查询读写锁是否可用。因此,正确答案是C和D。

2025-09-22 23:51:04 281

原创 数学笔试选择题:题组1

由于是多选题,正确答案为 A 和 C。1.(多选)已知矩阵。

2025-09-22 23:13:57 292

原创 数据库笔试选择题:题组1

​:Metis是一种专业的图分区工具,能够生成平衡的分区并最小化边割。这对于大型图非常有效,可以显著减少分布式计算中的通信开销,从而提高GCN的运行效率。因此,这是推荐的选择。​。

2025-09-22 23:01:23 198

原创 数据结构笔试选择题:题组1

根据给定的关键字序列(21, 40, 52, 45, 29, 12, 02, 66)和哈希函数 H(K) = K % 11,使用线性探测再散列处理冲突,在0~10的散列地址空间中,计算等概率下查找成功的平均查找长度(ASL)。H(29) = 7 → 位置7有冲突,线性探测位置8、9,位置9插入29,比较3次。H(12) = 1 → 位置1有冲突,线性探测位置2,位置2插入12,比较2次。H(02) = 2 → 位置2有冲突,线性探测位置3,位置3插入02,比较2次。因此,正确答案是选项 D. 3/2。

2025-09-22 22:58:17 504

原创 推荐系统笔试选择题:题组1

根据问题描述,在电商推荐系统强化学习模型中,用户点击率作为奖励信号稀疏且延迟高,这会导致策略梯度(Policy Gradient)方法收敛缓慢,因为稀疏和延迟的奖励会增加梯度估计的方差。​:Q-Learning是值基于方法,同样面临稀疏奖励挑战,且从策略梯度切换到Q-Learning不是直接改进,而是方法变更,可能不会加速收敛。​:MCTS主要用于规划问题(如游戏),需要大量模拟,不直接解决奖励稀疏问题,且计算成本高,不适合优先采用。C. 使用Advantage Actor-Critic (A2C)

2025-09-22 22:52:27 299

原创 深度学习笔试选择题:题组1

实际上,BatchNorm更适合固定尺寸的图像数据(因为批次统计要求固定尺寸),而LayerNorm更适合处理变长序列(如文本数据),因为它对每个样本独立归一化,不受序列长度变化影响。LayerNorm在训练和推理时都使用当前样本的统计量,行为一致。BatchNorm的归一化依赖于整个批次数据的统计(均值和方差),而LayerNorm的归一化仅依赖于单个样本自身的统计,不依赖批次大小。多任务学习能同时优化语音识别和方言分类任务,帮助模型学习方言不变的特征,从而提高对口音的鲁棒性,这是一种有效方法。

2025-09-22 22:47:57 1154

原创 计算机视觉笔试选择题:题组1

例如,膨胀率为2的3x3卷积核,其感受野相当于5x5卷积核,但参数数量仍为3x3的9个参数。​:区域提议网络(RPN)生成候选区域,减少数量会降低计算量和内存,但可能显著降低检测召回率(尤其是小目标或密集目标),从而影响精度。​:小目标(如芯片划痕)漏检率高,通常是因为小目标在原始图像中占据的像素很少,经过多层卷积下采样后,其特征信息在特征图上可能丢失或变得难以识别。增大输入尺寸可以使小目标在输入网络时包含更多的像素,从而在经过下采样后,仍然能在特征图上保留足够的信息以供检测,直接针对了小目标漏检的根源。

2025-09-22 22:17:25 1542

原创 字节二面手撕题:合并K个升序链表

本题目中的代码使用了堆(heap)来实现高效的合并。下面详细解释堆的概念。

2025-09-22 00:36:56 1037

原创 字节面试题:Batch Norm对模型梯度的影响

机制如何缓解梯度问题稳定输入分布将激活函数的输入稳定在梯度较大的非饱和区,确保反向传播时g'(z)不会过小,直接对抗梯度消失。缩放/偏移参数引入可学习的和,使网络有能力保持所需的分布,既保证了稳定性又不损失表达能力。平滑优化地形通过对批次数据做归一化,增加了噪声和正则化效果,使损失曲面更平滑,梯度流动更稳定,对抗梯度爆炸。允许高学习率减少了对大学习率导致训练不稳定的担忧,从而可以更快地训练,间接避免了梯度在传播过程中衰减。

2025-09-22 00:10:56 916

原创 字节面试题:激活函数选择对模型梯度传播的影响

激活函数公式对梯度反向传播的影响主要问题极易导致梯度消失(导数在饱和区趋近于0)梯度消失,计算慢ReLU有效缓解梯度消失(正区间导数为1),加速收敛Dying ReLU(负区间导数为0)缓解梯度消失,同时避免了Dying ReLU(负区间有微小梯度)需要选择或学习 $\alpha$Swish/Mish平滑地门控信息流,梯度传播特性优异,在许多前沿模型中表现最佳计算成本稍高激活函数通过其导数$g'(z)$ 直接参与反向传播的链式求导过程,是控制梯度流动的关键阀门。

2025-09-21 23:21:35 633

原创 字节面试题:正则化技术如何影响网络梯度

梯度消失/爆炸的根本原因是,在深层的反向传播链式中,梯度需要连续乘以权重矩阵 W(以及激活函数的导数)。:如Xavier/Glorot初始化、He初始化,它们在训练开始时通过根据输入和输出神经元的数量来设置权重的初始方差,为网络提供一个良好的起点,有助于在一开始就避免梯度消失或爆炸。此外,权重被控制在一个合理的范围内,使得整个网络的梯度流动更加可控。它提供了一个“高速公路”,让梯度可以直接从深层无损地反向传播到浅层,绕过了许多非线性变换层,从根本上破解了深度网络中的梯度消失问题。地帮助缓解梯度问题。

2025-09-21 22:59:21 634

原创 梯度下降优化算法笔试题:Adam,SGD等

梯度下降是一种用于最小化损失函数的迭代优化算法。损失函数衡量模型预测值与真实值之间的差距。梯度:函数在某一点的方向导数,指向函数值上升最快的方向。负梯度:自然就指向函数值下降最快的方向。思想:要最小化一个函数,我们只需沿着其当前点的负梯度方向(即最陡下降方向)前进一小步。:模型参数(例如权重W和偏置b:学习率,控制每一步的步长。:损失函数J关于参数的梯度。算法核心思想优点缺点适用场景SGD最基本的梯度下降简单,理论清晰收敛慢,易震荡,易陷鞍点理论基础,较少直接使用Momentum。

2025-09-21 21:29:13 994

原创 概率统计面试题4:A比B多抛一次硬币,求P(A正面向上次数) > P(B正面向上次数)

在A抛51次硬币、B抛50次硬币的情况下,硬币是公平的,每次抛掷正面向上的概率为0.5。设X为A正面向上次数,Y为B正面向上次数,需要求。这一结果适用于任何公平硬币抛掷,当A抛n+1次、B抛n次时,P(A正面次数 > B正面次数)恒为0.5。因此,在本问题中,概率为0.5。A抛51次硬币,B抛50次硬币,求P(A正面向上次数) > P(B正面向上次数)令Z为A前50次抛掷的正面次数,则Z与Y同分布(均服从二项分布。A的第51次抛掷记为W,W服从伯努利分布(通过概率分析,可以发现。由于Z和Y同分布,有。

2025-09-16 00:39:14 249

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除