匈牙利算法(Hungarian Algorithm),也称为Kuhn-Munkres算法。
核心目的:最优分配
匈牙利算法解决的是分配问题,具体来说是二分图最小权/最大权完美匹配问题。在CV的语境下,这意味着:
-
你有两组对象(构成二分图的两部分):
-
例如:当前帧检测到的目标 vs. 上一帧跟踪的目标;关键点集合A vs. 关键点集合B;待分类样本 vs. 类别中心点。
-
-
你需要为其中一组中的每个对象,在另一组中找到唯一的一个对应对象(形成完美匹配):
-
每个检测到的目标必须分配给一个跟踪器,反之亦然(理想情况下)。
-
每个关键点A必须匹配一个关键点B。
-
每个样本点必须分配到一个类别中心。
-
-
每个可能的配对都有一个“代价”(Cost)或“收益”(Gain):
-
代价:通常表示两个对象匹配的“不好”程度(例如,位置差异大、外观差异大,则代价高)。
-
收益:通常表示匹配的“好”程度(例如,外观相似度高,则收益高)。
-
-
目标:找到一种分配方式,使得所有配对的总代价最小化(或总收益最大化)。
为什么在计算机视觉中如此重要?
CV中充满了需要将一组对象最优地关联到另一组对象的任务:
1.多目标跟踪(MOT - Multi-Object Tracking):
问题: 当前帧检测到的多个目标边界框需要与上一帧已经存在的多个跟踪器关联起来。
代价: 通常使用预测框(由跟踪器根据运动模型预测)与检测框之间的IoU(Intersection over Union)的负值、位置欧氏距离、外观特征(如Re-ID特征)的余弦距离等计算。代价小表示匹配好。
应用: 匈牙利算法是解决帧间数据关联的核心算法之一(如经典的SORT, DeepSORT算法)。
2.立体匹配(Stereo Matching):
问题: 在左右两个相机图像中找到对应的像素点(视差计算)。
代价: 像素点之间的颜色/强度差异、梯度差异等。代价小表示像素对应关系好。
应用: 虽然全局方法(如动态规划、图割)也常用,但匈牙利算法或其变种可用于某些区域或特征点的匹配。
3.特征点匹配(Feature Matching):
问题: 在两幅不同图像中找到对应的关键点(如SIFT, SURF, ORB, AKAZE等)。
代价: 关键点描述符之间的距离(如欧氏距离、汉明距离)。距离小表示匹配好。
应用: 图像拼接、三维重建、物体识别、视觉定位(SLAM/VO)。匈牙利算法可以替代或补充暴力匹配/FLANN匹配,尤其是在需要确保唯一匹配(一对一的约束)时。
4.目标检测中的锚框分配(尤其是在两阶段检测器如Faster R-CNN中):
问题: 将大量的

最低0.47元/天 解锁文章
5万+

被折叠的 条评论
为什么被折叠?



