二叉树的操作——层序创建、先序、中序、后序、层序遍历

一、二叉树的链式存储:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;//结点数据 
    BinTree Left;//指向左子树 
    BinTree Right;//指向右子树 
}; 

二、遍历(先序,中序、后序、层序)

先序遍历(递归):

对结点的访问是在其左、右子树遍历之前进行的

过程:

1.访问根节点

2.先序遍历其左子树

3.先序遍历其右子树

void PreorderTraversal(BinTree BT)
{
    if(BT){
        printf("%d ",BT->Data );
        PreorderTraversal(BT->Left );
        PreorderTraversal(BT->Right );
    } 
}

中序遍历(递归):

对树中的任一结点的访问是在遍历其左子树后进行的,访问该结点后,在遍历其右子树

过程:

1.中序遍历其左子树

2. 访问根节点

3.中序遍历其右子树

void InorderTraversal(BinTree BT)
{
    if(BT){
        InorderTraversal(BT->Left );
        printf("%d ",BT->Data );//数据类型根据要求变化 
        InorderTraversal(BT->Right );
    }
 } 

中序遍历(非递归):

 void InorderTraversal(BinTree BT)
{
    BinTree T;
    Stack S=CreateStack();//创建空堆栈 
    T=BT;//从根节点出发
    while(T||!IsEmpty(S)){
        while(T){
            //一直向左并将沿途结点压入堆栈
            Push(S,T);
            T=T->Left ; 
        }
        T=Pop(S);//弹出堆栈
        printf("%d",T->Data );//打印结点 
        T=T->Right ; //转向右子树 
    } 
}

后序遍历(递归):

结点左右子树的遍历先进行,然后访问该结点

过程:

1.后序遍历其左子树

2.后序遍历其右子树

3. 访问根结点

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值