动态规划入门——计数类DP

这篇博客介绍了如何利用动态规划解决整数划分问题,通过举例和解析思路展示了将1到n的整数划分成和为n的所有可能方案数。代码实现部分提供了二维和一维动态规划的C++实现,强调了初始条件和状态转移方程的重要性。
摘要由CSDN通过智能技术生成

计数类DP

整数划分

【题目链接】900. 整数划分 - AcWing题库

在这里插入图片描述

样例剖析:

5的7种划分如下:
5
4 1
3 2
3 1 1
2 2 1
2 1 1 1
1 1 1 1 1

思路:

把1,2,3, … n分别看做n个物体的体积,这n个物体均无使用次数限制,问恰好能装满总体积为n的背包的总方案数(完全背包问题变形)

在这里插入图片描述

f[i][j]表示前i个整数(1,2…,i)恰好拼成j的方案数

f[i][j] = f[i - 1][j] + f[i - 1][j - i] + f[i - 1][j - 2*i] + f[i - 1][j - 3*i].....

f[i][j - i] = f[i - 1][j - i] + f[i - 1][j - 2*i] + f[i - 1][j - 3*i] .....

因此:f[i][j] = f[i - 1][j] + f[i][j - i](类似完全背包的推导!)

即一维:f[j] = f[j] + f[j - i]

初值问题:当一个数都不选的时候,只有一种方案

即:for (int i = 0; i <= n; i ++)f[i][0]= 1;
等价变形后: f[0] = 1

【代码实现】

二维:

#include <iostream>

using namespace std;

const int N = 1e3 + 7, mod = 1e9 + 7;

int f[N][N];

int main() 
{
    int n;
    cin >> n;

    for (int i = 0; i <= n; i ++) 
    {
        f[i][0] = 1; // 容量为0时,前 i 个物品全不选也是一种方案
    }

    for (int i = 1; i <= n; i ++) 
    {
        for (int j = 0; j <= n; j ++) 
        {
            f[i][j] = f[i - 1][j] % mod; 
            if (j >= i) f[i][j] = (f[i - 1][j] + f[i][j - i]) % mod;
        }
    }

    cout << f[n][n] << endl;
}

一维:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010, mod = 1e9 + 7;
int dp[N];

int main()
{
    int n;
    cin >> n;

    dp[0] = 1;// 容量为0时,前 i 个物品全不选也是一种方案
    for(int i = 1; i <= n; i ++)
        for(int j = i; j <= n; j ++)
            dp[j] = (dp[j] + dp[j - i]) % mod;
    
    cout << dp[n];
    return 0;
}

学习参考:
acwing算法基础课

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值