ACM-欧拉函数

首先提出欧拉函数phi[x] 的定义:小于x且与x互质的正整数的个数。
例如: phi[12]=4, 因为 1,5,7,11与12互质,特别的phi[1]=1。

欧拉函数的性质:
1 若x 是质数,则 p h i [ x n ] = x n − 1 ( x − 1 ) phi[x^n]=x^{n-1}(x-1) phi[xn]=xn1(x1)
2 若a|x (表示a 是x的因数) , 则 p h i [ a x ] = a ∗ p h i [ x ] phi[ax]=a*phi[x] phi[ax]=aphi[x]
3 若a, b 互质, 则 p h i [ a ] ∗ p h i [ b ] = p h i [ a ∗ b ] phi[a]*phi[b]=phi[a*b] phi[a]phi[b]=phi[ab]

证明:1 对于小于x且与x互质的数有1,2,3…x-1。对于 x n x^n xn
1 , 2 , 3...... x − 1. 1, 2, 3......x-1. 1,2,3......x1.
1 + x , 2 + x , 3 + x , . . . . ( x − 1 ) + x 1+x, 2+x, 3+x, ....(x-1)+x 1+x,2+x,3+x,....(x1)+x
1 + 2 x , 2 + 2 x , 3 + 2 x . . . . . ( x − 1 ) + 2 x 1+2x, 2+2x, 3+2x.....(x-1)+2x 1+2x,2+2x,3+2x.....(x1)+2x

1 + x n − 2 ∗ x , 2 + x n − 2 ∗ x , 3 + x n − 2 ∗ x , . . . . . . ( x − 1 ) + x n − 2 ∗ x 1+x^{n-2}*x, 2+x^{n-2}*x, 3+x^{n-2}*x,......(x-1)+x^{n-2}*x 1+xn2x,2+xn2x,3+xn2x,......(x1)+xn2x

所以总共 x n − 1 ∗ ( x − 1 ) x^{n-1}*(x-1) xn1(x1)个则 p h i [ x n ] = x n − 1 ∗ ( x − 1 ) phi[x^n]=x^{n-1}*(x-1) phi[xn]=xn1(x1)
2: 假设phi[x]个整数为分别, d 1 , d 2 , d 3 . . . . d p h i [ x ] d_1, d_2, d_3....d_{phi[x]} d1,d2,d3....dphi[x]
则phi[ax]个整数分别为:
d 1 , d 2 , d 3 , . . . . . . d p h i [ x ] d_1, d_2, d_3, ......d_{phi[x]} d1,d2,d3,......dphi[x]
d 1 + x , d 2 + x , d 3 + x , . . . . . . . d p h i [ x ] + x d_1+x, d_2+x, d_3+x, .......d_{phi[x]}+x d1+x,d2+x,d3+x,.......dphi[x]+x

d 1 + ( a − 1 ) ∗ x , d 2 + ( a − 1 ) ∗ x , d 3 + ( a − 1 ) ∗ x , . . . . . . d p h i [ x ] + ( a − 1 ) ∗ x d_1+(a-1)*x, d_2+(a-1)*x , d_3+(a-1)*x,......d_{phi[x]}+(a-1)*x d1+(a1)x,d2+(a1)x,d3+(a1)x,......dphi[x]+(a1)x
3: 因为记起来更方便就不在这证明了

欧拉函数的计算方法:
将x质因数分解得到 x = p 1 k 1 p 2 k 2 p 3 k 3 . . . . . . x=p^{k1}_1p^{k2}_2p^{k3}_3...... x=p1k1p2k2p3k3......
p h i [ x ] = p 1 k 1 − 1 ( p 1 − 1 ) ∗ p 2 k 2 − 1 ( p 2 − 1 ) . . . . . . phi[x]=p^{k1-1}_1(p_1-1)*p^{k2-1}_2(p_2-1)...... phi[x]=p1k11(p11)p2k21(p21)......

==> p h i [ x ] = x ∗ ( p 1 − 1 ) / p 1 ∗ ( p 2 − 1 ) / p 2 . . . . . . phi[x]=x*(p_1-1)/p_1*(p_2-1)/p_2...... phi[x]=x(p11)/p1(p21)/p2......
计算1 到n的欧拉函数的代码如下

int phi(int n)
{
	for(int i=1;i<=n;i++) phi[i]=i;
	for(int i=1;i<=n;i++)
	{
		if(phi[i]=i)
			{
				for(int j=2*i;j<=n;j+=i)
					phi[j]=phi[j]/i*(i-1);
			}
	}
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
ACM-ICPC(国际大学生程序设计竞赛)是一项面向大学生的计算机编程竞赛,涉及算法和数据结构等领域。在比赛中,选手需要解决一系列编程问题,使用合适的算法和数据结构来实现正确和高效的解决方案。 对于整理ACM-ICPC模板,以下是一些建议: 1. 了解比赛要求:首先,你需要了解ACM-ICPC比赛的具体要求和规则。这包括了解比赛所涉及的算法和数据结构,以及题目的类型和难度等。 2. 收集资料:收集与ACM-ICPC相关的资料,包括经典算法和数据结构的实现代码、常见问题的解题思路等。可以参考教材、博客、论文等资源。 3. 整理模板:将收集到的资料整理成模板。可以按照算法和数据结构的分类进行整理,例如排序算法、图算法、字符串算法等。对每个模板,添加必要的注释和示例代码,以便理解和使用。 4. 测试代码:对每个模板编写测试代码,确保它们的正确性和可靠性。可以使用已知的测试用例或自行设计测试用例。 5. 更新与扩充:定期更新和扩充模板,以适应ACM-ICPC比赛中新出现的算法和数据结构。同时,根据自己的经验和理解,对模板进行优化和改进。 6. 练习和复习:在比赛之前,利用整理好的模板进行练习和复习。尝试解决一些经典问题,使用模板中的算法和数据结构进行实现,并进行优化。 希望这些建议对你整理ACM-ICPC模板有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

真的卷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值